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Abstract
The prevalence of female infertility cases has been increasing at a frightening rate, affecting approximately 48 million women
across the world. However, oxidative stress has been recognized as one of the main mediators of female infertility by causing
various reproductive pathologies in females such as endometriosis, PCOS, preeclampsia, spontaneous abortion, and unexplained
infertility. Nowadays, concerned women prefer dietary supplements with antioxidant properties over synthetic drugs as a natural
way to lessen the oxidative stress and enhance their fertility. Therefore, the current review is an attempt to explore the efficacy of
various natural antioxidant compounds including vitamins, carotenoids, and plant polyphenols and also of somemedicinal plants
in improving the fertility status of females. Our summarization of recent findings in the current article would pave the way toward
the development of new possible antioxidant therapy to treat infertility in females. Natural antioxidant compounds found in fruits,
vegetables, and other dietary sources, alone or in combination with other antioxidants, were found to be effective in ameliorating
the oxidative stress-mediated infertility problems in both natural and assisted reproductive settings. Numerous medicinal plants
showed promising results in averting the various reproductive disorders associated with female infertility, suggesting a plant-
based herbal medicine to treat infertility. Although optimum levels of natural antioxidants have shown favorable results, how-
ever, their excessive intake may have adverse health impacts. Therefore, larger well-designed, dose–response studies in humans
are further warranted to incorporate natural antioxidant compounds into the clinical management of female infertility.
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Introduction

The inability to have children affects approximately 48.5 to
186 million people across the world, and surrounding it, many
cultural and social stigmas vary, apart from the emotional
burden to the couple itself [1, 2]. Infertility, defined as the
failure to conceive a known pregnancy after a year or more
of regular unprotected sexual intercourse, has now become a
global health issue affecting 15–25% of couples in the western
countries [3, 4]. Generally, approximately 84% of the couples
conceive after 1 year of sexual intercourse, and 92% after
2 years [5]. Recently, a declining trend in semen quality of
Asian men have been observed over the past few decades [6]
that may be accountable for the rising infertility cases due to

the male factor. On the other side, female infertility affects an
estimated 48 million women with the highest prevalence af-
fecting people in South Asia, Sub-Saharan Africa, North
Africa/Middle East, Central Europe, and Central Asia [7].
Although male and female factor together contributes 20–
30% of total infertility cases [8], however, in most of the cases
(40–50%), its etiology has been attributed to the female part-
ner [9]. The mechanisms, by which multivariable factors af-
fects female fertility, are not well understood yet. Some stud-
ies have proposed that the high frequency of this dis-
ease is likely to rise as the postponement of childbear-
ing increases, mostly in developed regions of the world
[10, 11]. However, the abundantly documented literature
studies related to the pathology of the couple’s infertil-
ity involved oxidative stress (OS) in the pathophysiolo-
gy of female infertility [12–14]. Moreover, it has also
been involved in the pathology of unexplained infertili-
ty, affecting approximately 15% of the cases [8].

OS is generated from the disruption of the delicate balance
between reactive oxygen species (ROS) produced from aero-
bic metabolism of cells and defending antioxidants [15]. ROS
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can also be produced from exogenous sources including water
and air pollution, alcohol, smoking, heavy metals, radiation,
and various kinds of drugs [16]. Excessive production of ROS
disturbs the reproductive function of males through lipid per-
oxidation, germ cells’ apoptosis, and sperm DNA fragmenta-
tion and negatively affects the assisted reproductive technique
(ART) media [17]. Moreover, ROS-induced damage to sper-
matozoa is considered as the main factor responsible for re-
productive pathology of males (about 30–80% of idiopathic
male infertility) [18]. Likewise, OS is considered as one of the
major factors involved in the initiation of reproductive pathol-
ogies of females [19, 20], such as preeclampsia, recurrent
pregnancy loss, embryonic resorption, intrauterine growth re-
striction (IUGR), and fetal death [21]. Normal levels of ROS
are essential for various signal transduction pathways of oo-
cyte maturation, folliculogenesis, luteolysis, and feto-
placental development [22]; however, overabundance of
ROS exerts damaging effects. They have a close association
with reproductive functions, so tightly controlled ROS is an
essential process. It is considered as one of the critical ele-
ments for maintenance of redox homeostasis, gene expression,
cell signaling, and various signal transduction pathways in-
volved in cell growth, function, differentiation, and death
[23, 24]. The body has different enzymatic and nonenzymatic
antioxidant defense mechanisms to work against the OS.
However, the body’s endogenous defense systems are incom-
plete without the natural antioxidant compounds which act
in vivo through enhancing the exhausted levels of endogenous
antioxidant defenses in the organism’s body [25]. Natural an-
tioxidant compounds found in fruits, vegetables, various me-
dicinal plants, and other dietary sources can be broadly divid-
ed into three groups: vitamins, carotenoids, and phenolic com-
pounds. Natural antioxidant compounds have recently snared
the interest of the scientific community and the general public
due to their immense biological health benefits. Numerous
studies in animals and humans have shown a decrease in the
levels of OS markers after consumption of vegetables and
fruits or antioxidant supplements [26–29]. Low consumption
of antioxidant sources such as fruits and vegetables by females
seems to increase their risk to endometriosis, one of the caus-
ative factors for female infertility [30]. Although the relation-
ship of the dietary factors with human infertility is not
completely understood, some research has reported improve-
ment in female infertility by the consumption of some
micronutrients [31]. Consumption of food and beverages
enriched with polyphenols elevated the antioxidant capacity
of plasma in humans [32] and reduced the in vitro and in vivo
OS in the human placenta and placental trophoblasts, respec-
tively [33]. A study has demonstrated the significance of nat-
ural antioxidants vitamin C and vitamin E in reducing the OS
in intrauterine growth–restricted (IUGR) pregnant women
[34]. Additionally, recent studies have also demonstrated the
relationship between diet and female infertility and the

involvement of various lifestyle factors that affect female fer-
tility through OS [35, 36], suggesting that antioxidants are the
most important components of having healthy fertility that
every women and man needs to focus on. However, in spite
of numerous antioxidant compounds present in plant-derived
food, in several cases, plants itself or their parts are used by
humans as a source of medicine to improve the various fertil-
ity aspects of females. For example, Ceratonia siliqua (locust
bean) and Anastatica hierochuntica (dinosaur plant) are wide-
ly used by traditional healers as herbal medicines to treat the
female infertility in rural areas of West Bank/Palestine [37].
Cinnamon (Cinnamomum zeylanicum) is one of the most
commonly prescribed herbs in China used for treating
endometriosis-induced symptomatic discomfort [38] and also
for improvement in menstrual cyclicity of polycystic ovarian
syndrome (PCOS) women [39]. The protective effect of
Ocimum basilicum on ovarian histopathology due to its anti-
oxidant potential has been illustrated in rats exposed to the
electromagnetic field [40]. Thus, it is imperative to investigate
the effects of various antioxidant compounds either present in
plant-derived food or plant itself in improving the OS-
mediated infertility problems in females. Consequently, based
on the accumulated shreds of evidence from in vitro and
in vivo animal and human studies, the current review evalu-
ates the efficacy of most abundantly studied natural antioxi-
dant compounds including vitamins, carotenoids, and plant
polyphenols in improving the fertility status of females.
However, in addition to this, the review also focuses on the
role of mostly used medicinal plants in female infertility man-
agement. The review further focuses on the utilization of var-
ious natural antioxidant compounds in ART, and possible
antioxidant therapies involving natural antioxidant for female
reproductive disorders along with their safety measures of
utilization are also discussed in the review.

Factors Contributing to Oxidative Stress
and Altered Reproduction in Females

Although there is little information about the factors implicat-
ed in the generation of OS that has been associated with al-
tered reproductive physiology of females, several literature
studies in the last few years have documented the role of
lifestyle and environmental factors in inducing OS in females
[16, 41–43]. Alcohol and smoking are both known to decrease
fertility in females [44, 45]. Increased rates of fetal loss and
decreased growth of fetus have been linked with maternal
smoking [46]. Nicotine receptors and their functions have
been linked with reproductive pathologies induced by
smoking in females; however, OS has recently become a ma-
jor concern [47]. Similar to smoking, even a moderate amount
of alcohol consumption during pregnancy leads to IUGR, low
birth weight, and increased risk of congenital anomalies. Loss
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of early pregnancy and spontaneous abortion may also be
attributed to maternal alcohol consumption [48]. Regular con-
sumption of alcohol leads to the excessive production of ROS,
causing lipid peroxidation and reducing superoxide dismutase
(SOD) activity and GSH levels [47].

Apart from alcohol and use of tobacco, various other envi-
ronmental pollutants (e.g., pesticides, plastics, heavy metals,
and other industrial compounds) may also induce OS that
could interfere with the processes such as ovarian develop-
ment, steroidogenesis, and folliculogenesis, thus impairing
the normal fertility of females [13, 49–51]. Both organochlo-
rine and organophosphate pesticides have been shown to in-
duce the OS-mediated apoptosis of granulose cells by
impairing the antioxidant defense mechanism in caprine ovary
[52, 53]. Exposure to another group of compounds called
polychlorinated biphenyls (PCBs) has been associated with
problems of miscarriages in women [54]. PCBs can induce
OS via endothelial dysfunction and damage the membrane
with subsequent ROS formation [13]. In a cross-sectional
study, elevated blood levels of lead [55] have been found to
be associatedwith prolonged time-to-pregnancy [56]. Another
similar study showed that even low levels of cadmium and
lead may have deleterious impact on female fecundity [57].

In addition to these environmental and lifestyle factors,
recently, studies have documented the influence of early life
nutritional status on reproductive physiology of females [58,
59]. However, during mammalian development, the transduc-
tion of environmental information (e.g., nutritional status)
from mother to her embryo or fetus occurs through the pla-
centa or to her infants through lactation [60]. Therefore, it is
imperative to determine the potential contribution of maternal
nutritional status (undernutrition/overnutrition) during the
critical windows of development in setting the pace of repro-
ductive functions in the offspring. Intriguingly, a study by
Bernal et al. has been carried out to examine the effects of
maternal undernutrition (UN) during pregnancy and lactation
on offspring’s ovarian functions. Results showed a significant
decrease in the number of primordial, secondary, and antral
follicles associated with reduced mRNA levels of genes es-
sential for follicle maturation and ovulation in ovaries of off-
spring born to mothers undernourished throughout pregnancy
and lactation [61]. However, these changes in offspring’s ova-
ry may be mediated via the generation of oxidative stress as
revealed by the presence of increased protein carbonyl con-
tents and hyperoxidized peroxiredoxin 3 in ovarian tissue of
offspring, suggesting their compromised antioxidant defenses
[61]. Maternal overnutrition (MO) itself is a state of inflam-
mation that has been shown to induce a lipotoxic pla-
centa associated with enhanced production of free radi-
cals and inflammatory cells [62]. Recently, a study has
documented that MO leads to altered metabolic func-
tions and disrupted redox balance of the fetus [63]. In
another study, administration of a high-fat diet during

pregnancy has been shown to induce hyperlipemia in
offspring via reduced expression of glutathione peroxi-
dase 1 and superoxide dismutase [64]. Since both ma-
ternal undernutrition and overnutrition are related to the
altered production of free radicals and impaired antiox-
idant defenses, OS is considered to be the major link
between poor intrauterine environment and increased
risks of reproductive dysfunctions in females [65].

Physiological and Pathological Role of ROS
in Female Reproduction: a Brief Overview

As mentioned previously, a threshold level of ROS facilitates
the vital physiological functions of the reproductive system,
but an excessive amount of ROS leads to the reproductive
dysfunctions that contribute to infertility [66]. In males, phys-
iological levels of ROS are essential for sperm maturation,
capacitation, hyperactivation, acrosome reaction, and fertiliza-
tion; however, a supraphysiological level of ROS causes lipid
peroxidation, sperm DNA fragmentation, apoptosis of germ
cells, and thus infertility [67]. Numerous studies have con-
firmed the damaging effect of ROS on semen parameters
and fertility potential. Sperm motility, sperm viability, and
fertilization capacity are abolished by OS in the reproductive
tissues as significantly higher levels of ROS were observed in
the semen of infertile men compared with those of fertile men
[68]. OS has been implicated in patients with idiopathic [69]
and unexplained male infertility [70]. Moreover, it has also
been implicated in the pathological conditions such as varico-
cele [71, 72], inflammation, infection [73], and spinal cord
injury [74] that could compromise fertility in males.
However, in females, large numbers of follicles start to devel-
op and grow in the ovary every month, but only one of them
reaches maturity, the dominant follicle. This process is
targeted by an enhancement in ROS and inhibited by antiox-
idants [13]. Enhanced steroid production in the growing folli-
cle causes an increase in P450 that in turn leads to ROS pro-
duction. ROS produced by pre-ovulatory follicles are essential
inducers of ovulation [75]. ROS are also generated in the
corpus luteum and therefore considered as key factors for
reproduction. Furthermore, ROS can influence the develop-
ment of early embryo through manipulating the key transcrip-
tional factors and thus modifying the expression of genes [76].
ROS concentration can also play an important role in the
fertilization of eggs and implantation [77].

Additionally, numerous studies have shown that regulated
levels of free radicals in the ovaries, oviduct, uterine endome-
trium, embryos, and peritoneal fluid have a significant role in
ovarian steroidogenesis, folliculogenesis, hormone signaling,
tissue remodeling, oocyte maturation, the functioning of the
oviduct and cyclic changes in the endometrium [78–80]. It has
also been considered that the decline in fertility with age is
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inflected by OS [81, 82], and it plays a role during pregnancy
[83], normal parturition [84, 85], and in preterm labor initia-
tion [86, 87]. OS affects the whole reproductive lifespan of a
woman and even thereafter (i.e., menopause). Moreover, the
ability of OS to influence the reproduction of females has been
studied on various endpoints in terms of the oocyte, fertiliza-
tion, estrus or menstrual cycle, embryo, and pregnancy [88,
89]. There are enough lines of evidence for the involvement of
OS in the pathogenesis of reproductive disorders of females,
such as preeclampsia [90], hydatidiform mole [91, 92], free
radical-induced birth defects [93], and other conditions like
abortion [94]. Furthermore, studies have implicated OS in
the pathology of endometriosis, PCOS, unexplained infertili-
ty, and tubal and peritoneal factor infertility [20, 95–97].
Thus, OS affects female reproduction in two ways (Fig. 1),
that is, it is not only required for the various physiological
processes but also involved in different pathologies of the
reproductive system that cause infertility in females.
However, different mechanisms of OS-mediated reproductive
damage in females have been proposed. Excessive level of
ROS in the follicle can overcome the antioxidant defense of
follicular fluid and causes damage directly to the oocyte. DNA
of spermatozoa and oocytes could be damaged and results in
impaired fertilization when the OS in the environment of peri-
toneal cavity is very severe [88]. Furthermore, if fertiliza-
tion occurs, the induction of apoptosis by OS may lead
to abortion, fragmentation of embryo, failure of implan-
tation, abnormal placentation, and congenital abnormali-
ties [88]. Excessive ROS may obstruct the endometrium
that physiologically functions to support the developing
embryo [98]. OS causes regression of the corpus luteum
and, thus, results in inadequate hormonal supply essen-
tial for the maintenance of pregnancy [20].

Antioxidant Defense System

An antioxidant may be defined as a molecule having the pro-
pensity to neutralize or inhibit the free radical reactions and
thus delay or prevent cellular damage. Although the antioxi-
dant defense systems vary from one species to another, its
presence in living organisms is universal [99]. Moreover,
there are thought to be hundreds or probably thousands of
substances that may act as antioxidants, each one acts exclu-
sively and may interact with one another, helping the body to
work effectively. Antioxidant is not the name of a substance,
but rather, it represents what a variety of substances can do.

Antioxidant Classification and Antioxidant Process

Antioxidant may function as singlet oxygen quencher, elec-
tron donor, hydrogen donor, radical scavenger, enzyme inhib-
itor, peroxide decomposer, co-antioxidants, and metal-
chelating agents [100]. Broadly, antioxidants can be classified
in many ways (Fig. 2), based on their activity (enzymatic and
nonenzymatic), source (endogenous and exogenous), and sol-
ubility (liposoluble and hydrosoluble). Furthermore, the eu-
karyotic antioxidant defense system is highly compartmental-
ized, where different levels of mitochondrial, nuclear, and
cytoplasmic antioxidants function independently or they
may work synergistically in a network type of system [101].

The process of antioxidants can work in two ways: preven-
tion or chain breaking. In the preventive function, antioxidant
enzymes such as catalase (CAT), glutathione peroxidase (GPx),
and SODmay stop the oxidation reactions via reducing the rate
of chain initiation, either through scavenging the initiating free
radicals or through the transition metals’ (copper and iron) rad-
ical stabilization [102]. In the chain-breaking process, electron

Fig. 1 Relationship between
oxidative stress and female
reproduction
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released by one radical leads to the formation of another radical.
This second radical has a similar effect on another cellular
molecule and functions continuously in this manner until its
stabilization by the chain-breaking antioxidant (e.g., vitamin
E) and its breakdown into a harmless product. Lipid peroxida-
tion is a common example of a chain reaction [103].

The female reproductive microenvironment is protected
from OS through an interacting network of endogenous and
exogenous antioxidant defense systems. However, the body’s
endogenous antioxidant defense consists of enzymatic and
nonenzymatic systems, in which the latter one is primarily
represented by glutathione [104]. Glutathione (GSH), consid-
ered as the mother of all antioxidants, a central detoxifier, and
master of the immune system [105], is ubiquitously distribut-
ed thiol in both somatic cells and germ cells of the organism. It
has been shown to protect the egg from oxidative damage
during folliculogenesis in females, thus maintaining the egg
in a healthy state. Moreover, studies have demonstrated that
elevated levels of intracellular glutathione result in a healthier
and stronger embryo [106]. However, Adeoye et al. have re-
cently reviewed the antioxidative effects of GSH against OS-
mediated female infertility [66]. Amino acids like taurine and
hypotaurine are essential for the redox homeostasis of gametes
and their concentration fluctuates during folliculogenesis.
Both are involved in the neutralization of lipid peroxidation
products and hypotaurine also neutralizes the hydroxyl radical
[107]. However, the iron-binding proteins transferrin and fer-
ritin are also involved in the antioxidant defense through their
ability of metal chelation, and thus, inhibit the catalyzation of
free radicals [108].

Antioxidant Enzymes

The endogenous antioxidant enzymes directly facilitate the
neutralization of free radicals that are highly reactive and

unstable species contributes to OS. The different antioxidant
enzymes include SOD, CAT, GPx, glutathione reductase
(GR), glutathione-S-transferase (GST), and thioredoxin sys-
tem [51]. It has been considered that alterations of the antiox-
idant defense system are mediated by downregulation of the
genes (GSTMI, GSTA1) encoding GST that perform GSH
conjugation and GSH-dependent transformation of xenobi-
otics [109]. SOD exists in three isoforms: cytosolic SOD1
containing copper (Cu) and zinc (Zn) as cofactors, mitochon-
drial SOD2 containing manganese (Mn) as metal cofactors,
and extracellular SOD3 which is structurally similar to SOD1
[13]. The fundamental reaction of antioxidant enzymes of an-
tioxidative function is initiated by the metallic enzyme SOD
via decomposition of superoxide radical into hydrogen perox-
ide (H2O2). Then CAT, GPx, GR, and GST convert the H2O2

and other reactive peroxides into H2O and O2 in a multistep
process, thus preventing the oxidative damage to various cel-
lular components [13].

Regarding female reproductive physiology, all these anti-
oxidant enzymes have been shown to play a crucial role in
various physiological processes. All the three isoforms of
SOD and their activity were found to be higher in follicular
fluid of small- and medium-size follicles as compared with
large antral follicles [110–112]. According to these studies, a
relatively reduced activity of SOD in the follicular fluid of
large follicles is essential to ensure the threshold level of
ROS required for ovulation. Luteinizing hormone (LH) is a
gonadotropin secreted by the anterior pituitary and is essential
for triggering ovulation and the development of corpus luteum
in females. A study has demonstrated the LH-induced upreg-
ulation in the mRNA and protein levels of antioxidant en-
zymes SOD1, SOD2, and CAT in bovine corpus luteum
[113]. Furthermore, a study has investigated the relationship
between FSH stimulation and levels of CAT activity in ovar-
ian granulosa cells during folliculogenesis. It has been found

Fig. 2 Schematic representation
of general antioxidant
classification. SOD, superoxide
dismutase; CAT, catalase; GST,
glutathione-S-transferase; GPx,
glutathione peroxidase; GR, glu-
tathione reductase; GSH, reduced
glutathione; TFN, transferrin;
UA, uric acid; LC, L-carnitine
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that after FSH stimulation, with the increase in estradiol level,
CAT activity also increased and higher in follicles of large
size than the medium- and small-size follicles, suggesting its
role in follicle selection and apoptosis prevention [114]. In an
in vitro study, exposure of cultured granulosa cells to malathi-
on leads to increased fragmentation of DNA and a decrease in
the activity of antioxidant enzymes (CAT and SOD) in
antral follicles of goat [53]. In another observational
study, during meiotic maturation, CAT has been shown
to prevent the genome of mouse oocytes from oxidative
injury, while its inhibition leads to chromosomal defects
and DNA damage in the oocyte nucleus [115]. The
thioredoxin system present in the cells of the placenta
includes three antioxidant enzymes, thioredoxin, thioredoxin
peroxidase, and thioredoxin reductase that catalyze the de-
composition of alkylhydroperoxides and H2O2 to alcohol
and water in a synergistic manner [116].

Finally, from the above discussion, it is evident that endog-
enous antioxidant defense plays an indispensable role
against OS in the female reproductive system at various
time points to maintain the normal reproductive physi-
ology and fertility in females. However, as mentioned
earlier, that the endogenous antioxidant defense systems
are incomplete without the exogenous natural antioxi-
dant compounds which act interactively or synergistical-
ly to boost the endogenous antioxidant system is
discussed in the following section.

Ameliorating Effects of Natural Antioxidant
Compounds on Female Reproduction

Owing to the significant role that antioxidants play in human
health and disease, and their popularity due to greater public
interest, numerous studies have documented the beneficial
effect of natural antioxidant compounds alone or in combina-
tion with other antioxidants or micronutrients on female re-
production (Table 1). In a study, the intake of a diet deficient
in vitamins was found to increase the risk of miscarriage
[117]. Another observational study established the relation-
ship between the risk of spontaneous early miscarriage and
uptake of fruits, green vegetables, and dairy products [118].
Some studies suggested that a lesser intake of micronutrients
during pregnancy places women at nutritional deficiencies
and affects the growth of the fetus [119]. So, the intake of
natural antioxidants from food should be the individual’s first
choice because they not only play a significant role in the
prevention and treatment of diseases but also circumvent the
negative effects on human body. Natural antioxidants may
enhance female fertility either through enhancing the activities
of endogenous antioxidants or via inhibiting the OS-mediated
harmful processes in the female reproductive tract (Fig. 3).

Antioxidant Vitamins

Vitamin E

Food like green vegetables, vegetable oil, kiwi fruits, and nuts
such as almonds, walnuts, etc. are enriched with vitamin E. It
is the most potent lipid-soluble and chain-breaking antioxi-
dant, functions to inhibit the lipid peroxyl radicals (LOO.)
during the lipid peroxidation process, and thus results in the
termination of the cascade of harmful reactions in cellular
membranes [120]. Apart from the various functions it per-
forms in the body, it is principally essential to maintain the
normal fertility potential of both human and livestock species
[121]. In fact, it was first recognized as the critical dietary
factor for the reproductive potential of both male and female
rats [122, 123].

During normal pregnancy, the level of oxidative-stabilized
vitamin E has been shown to rise in maternal blood [124].
Additionally, it was considered that vitamin E requirement
may enhance in situations like smoking during pregnancy
[125]. In a study involving co-incubation of media with
H2O2 and γ-tocotrienol, γ-tocotrienol was reported to im-
prove the porcine embryo’s development by the modification
of apoptotic genes Bax and Bcl-xL [126]. Another compre-
hensive study using in vivo laboratory animal models showed
that co-administration with 5 mg/kg body weight (bw) of nic-
otine and 60 mg/kg of tocotrienol-rich fraction (TRF) has
increased the pregnancy rates to 83.3% in rats, in comparison
to those treated with nicotine alone and had a pregnancy rates
of 33.3% [127]. Furthermore, a study showed the protective
effect of γ-tocotrienol supplementation in reducing the dam-
aging effect of nicotine on the oocyte’s ultrastructure [128].
Simultaneous administration of tocotrienol (T3) with cyclo-
phosphamide helps in the preservation of ovarian function
during chemotherapy and also protection against apoptosis
in ovaries induced by oxidative stress [129, 130]. Another
in vitro study investigated the protective effect of vitamin E
on the development of preimplanted buffalo embryos. The
results indicated that 100 μM vitamin E supplementation in
culture under 20% O2 increased the frequency of blastocyst
formation and total cell count and also reduced comet tail in
comparison to control [131]. A parallel study in sheep was
also conducted to investigate the effect of α-tocopherol sup-
plementation on in vitro oocyte maturation and preimplanta-
tion embryo development. Results showed that supplementa-
tion of α-tocopherol significantly enhanced the cleavage rate,
formation of morulae (at 200 μM) and blastocyst (at 100 μM,
200 μM, and 400 μM), and total cell number of the blastocyst
(at 200 μM) when compared with the control group [132].
Simultaneous treatment of γ-tocotrienol (30, 60, and
90 mg/kg) with nicotine reversed the nicotine-induced delete-
rious effects on embryo development through its antioxidant
capacity in mice [133].
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Table 1 Ameliorating effects of natural antioxidant compounds on female infertility

Antioxidant
compound

Experimental
animal

Study type
(in vivo/in vitro)

Dose and durations Improved reproductive outcome(s) References

γ-Tocotrienol or
tocotrienol

Porcine In vitro 100, 200, and 400 μM for
6 days

Improved embryonic development by modification of
apoptotic genes Bax and Bcl-xL

[126]

Mice In vivo 30, 60, 90 mg/kg/day for
7 days

Improved the nicotine-induced cessation of embryonic
development; reduced lipid peroxidation

[133]

Mice In vivo 60 mg/kg/day for 30 days Preservation of ovarian function during chemotherapy
and protection against apoptosis induced by OS

[129, 130]

Vitamin E Human In vivo 100 mg/day p.o. for
14 days

No significant differences of ovulation rate, clinical
pregnancy rate, and ongoing pregnancy rate

[344]

Vitamin E +
pentoxyfylline
(PTX)

Human In vivo Vit E—1000 IU
PTX—800 mg daily for

8.1 months

Improved the endometrial growth in women with thin
endometrium undergoing assisted conception

[345]

Vitamin C Rat In vivo 250 mg/kg daily for
30 days

Decreased total oxidant status (TOS) and oxidative
stress index (OSI) in ovarian, fallopian tubal, and
uterine tissues

Reduced anti-mullerian hormone (AMH)
Diminished caspase-3 and caspase-8 expressions in

ovarian and uterine tissue

[141]

Mice In vitro 50 μg/mL for 14–18 days Enhanced the survival and growth of primary follicles
cultured in alginated hydrogel and also their
structural integrity

[140]

Mice In vivo 45 mg/kg/day for 22 days Increased AMH concentration
Decreased levels of 8-OHdG and Bax/Bcl-2 ratio

[139]

Vitamin C and
vitamin E

Human In vivo Vit C—1000 mg
Vit E—1200 IU for

8 weeks

Reduced chronic pain, dysmenorrhea, and dyspareunia
in women with endometriosis

[185]

Goat In vitro 0.5 and 1 mM for 24, 48,
72 h

Reduced granulose cell apoptosis; increased
antioxidant enzymes (SOD, GST, CAT) activity;
decreased MDA level and FRAP activity

[186]

LC + metformin Human In vivo LC—3 g
Metformin—850 mg from

day 3 till day 7 of
menstrual cycle

Improvement in menstrual regularity, ovulation rate,
and pregnancy rate

[177, 346]

LC and
N-acetyl-cyste-
ine (NAC)

Human In vivo LC- 3 g
NAC- 600 mg from day 3

until day 7 of menstrual
cycle

Improved menstrual pattern, FSH, LH, and free
testosterone; improved pregnancy and ovulation rate

[347]

Vitamin C and
LC

Hen In vivo Vit C—1 g/kg diet
LC—100 and 200 mg/kg

diet for 3 weeks

Enhanced egg production and egg quality
Reduced oxidative stress

[190]

LC and coenzyme
Q10

Rabbit In vivo, in vitro LC—40 mg/kg bw
Coenzyme Q10–10 mg/kg

bw for 21 days

More number of follicles and embryo and higher
ovulation rate; higher rates of in vitro blastocyst
production

[188]

Retinol Bovine In vitro 1, 5, and 10 μM Improved oocyte and subsequent embryo development [147]

9-cis-Retinoic
acid

Bovine In vitro 5, 50, and 200 nM Improved oocyte maturation rate (5 nM)
Higher mitochondrial membrane potential and reduced

accumulation of ROS (5 nM)
Upregulated antioxidant-related (SOD1, CAT, GPx4,

PRDX1, HMOX1) genes (5 and 50 nM)

[144]

Tretinoin Bovine In vitro 0.25, 0.5, and 1 μM Improved in vitro blastocyst formation (0.25 μM)
Reduced ROS production in embryos (0.25 and

0.5 μM)
Reduced Bax and SHC1 expression level

[354]

β-Carotene and
vitamin A

Holstein cows In vivo 200 mg β-carotene and
50,000 IU vit A at the
time of estrus induction

Improved the corpora lutea development and follicular
growth in cows having fertility problems

[169]

Lycopene Rat In vivo 5 mg/kg/day for 14 days Reduced ovarian MDA levels
Increased total GSH, GR, and SOD activities in

cisplatin-damaged ovarian tissue

[170]

5 mg/kg/day for 5 days [171]

Reprod. Sci.



Table 1 (continued)

Antioxidant
compound

Experimental
animal

Study type
(in vivo/in vitro)

Dose and durations Improved reproductive outcome(s) References

Ameliorated the methotrexate-induced oxidative
ovarian injury and infertility due to prolonged
gestation and reduced number of offspring

Green tea
polyphenols

Bovine In vitro 10, 15, 20, and 25 μM Progress in the rate of blastocyst development and
pregnancy

[205]

EGCG Porcine In vitro 2.5, 5, 10, and 25 μg/mL Increased rate of fertilization (5 μg/mL) during in vitro
fertilization (IVF)

[355]

Mice In vitro 100 mg/kg bw Improved oocytes’ developmental competence and
further embryo quality during maternal
hyperthermia

[206]

Green tea leaves
extract

Sheep In vitro 0.3, 0.6, and 1.2 mg/mL Enhanced oocytes maturation rate
Improved morula and blastocyst formation rate

[207]

Resveratrol Human In vitro 10−5 M for 7 days Increased the fraction of growing follicles during
culture of human ovarian follicles

[356]

Human In vivo 800 mg/day for 40 days Reduction in the expression of VEGE and HIF1 genes
in granulose cells

Higher rate of high quality oocyte and embryo

[348]

Human In vivo 400 mg for 12–14 weeks Reduced the mRNA and protein level of matrix
metalloproteinases (MMP-2 and MMP-9) in the
endometrium

Lowered their serum and endometrial fluid
concentration

[349]

Resveratrol and
EGCG

Human In vivo 1500 mg p.o. for 3 months Significant decrease of total testosterone and
dehydroepiandrosterone (DHEAS) in PCOS
women

[312]

Mice In vivo, in vitro 30 and 100 mg/kg/day for
2 weeks; (0–200 μM)

Alleviated OS-mediated oogonial stem cell apoptosis
and aging

Attenuated H2O2-induced cytotoxicity through
activating Nrf2

[357]

Human In vitro Resveratrol—25, 50,
100 μM

EGCG—20, 40, 80,
100 μM

Induced reduction in human endometrial epithelial
cells’ (EECs) proliferation

Increased apoptosis in primary cell culture

[350]

Quercetin Mice In vitro 0–50 μM until day 5.5 of
embryo culture

Protection of zygotes from H2O2-induced oxidative
damage during in vitro development of
preimplantation embryos by decreasing ROS level,
maintaining mitochondrial function and total
antioxidant capability

[226]

Human In vivo 1000 mg/day for 12 weeks Significantly decreased resistin concentration and
mRNA level

Reduced the testosterone and LH concentration in
PCOS women

[351]

Human In vivo 1 g daily for 12 weeks Reduced the level of testosterone and LH
Increased the level of adiponectin in PCOS women

[352]

Rat In vivo, in vitro 12.5, 25, and 50 mg/kg for
90 days

5, 20, 50 μM for 6 h

Increased mRNA levels of OS-related genes SOD1,
CAT, and GSH in menopausal rat ovaries

Prevented the reduced viability of granulose cells by
H2O2-induced OS in ovary

[227]

Porcine In vitro 1, 10, and 100 ng/mL for
24 h

Enhancement of total antioxidant status (TAS), and
activities of GPx and SOD

[358]

Genistein Rat In vivo 0.5, 1, or 2 mg/kg for
14 days

Inhibited the cyclophosphamide-mediated decrease in
AMH and E2

Alleviated the OS and inflammation in ovarian tissue

[242]

160 mg/kg/day for
4 weeks and 4 months

Higher percentage of primordial follicles in
4-month-old rats

Greater number of surviving follicles in 15-month-old
rats

[240]

Curcumin Mice In vivo 200 mg/kg bw for
3 weeks; from day 6 of
gestation till parturition

Decrease the benzo[a]pyrene-induced follicular atresia
and ameliorated the histological architecture of both
uterus and ovary

Improved the neonatal growth retardation

[359]
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Vitamin C

Vitamin C is a key representative of the nonenzymatic antiox-
idant system in the aqueous milieu of the organism [134]. It is
an important vitamin for primates, bats, guinea pigs, and
humans, as they are deficient in L-gulono-g-lactone oxidase,

the enzyme responsible for its biosynthesis from glucose
[135] and so must be provided through food. Vitamin C is
commonly found in fresh vegetables and fruits, particularly
in citrus fruits. It works through the chain-breaking process by
donation of an electron to the lipid radical and thus terminat-
ing the lipid peroxidation chain reaction. Furthermore, it helps

Fig. 3 Natural antioxidants may enhance the female fertility by
upregulating ( ) the activities of endogenous antioxidants or
gonadotropins (LH, FSH) and by downregulating ( ) or inhibiting the
OS or OS-induced damage in the female reproductive tract. LPO, lipid

peroxidation; OSI, oxidative stress index; TOS, total oxidant status; TNF-
α, tumor necrosis factor-α; LH, leutenizing hormone; FSH, follicle-
stimulating hormone; Casp3, caspase-3; Casp8, caspase-8; E2, estradiol;
P4, progesterone

Table 1 (continued)

Antioxidant
compound

Experimental
animal

Study type
(in vivo/in vitro)

Dose and durations Improved reproductive outcome(s) References

Mice In vivo 100 mg/kg/day for
10 days

Enhanced proliferation and decreased apoptosis of
ovarian cells in mice exposed to whole body
ionizing radiation

[215]

Mice In vivo 100 μg/g 4 times a week Promoted folliculogenesis and steroidogenesis in
ovarian cells

[216]

Human In vitro 0.001–50 μM for 24, 48,
72 h

Increased the human granulose cells’ viability
Decreased the ROS/RNS formation after stress

induction at lower concentration

[353]
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in the regeneration of vitamin E in association with GSH and
other endogenous reducing equivalents [120].

Ascorbic acid mainly has three natural functions of specific
interest to reproduction, which are dependent on its reducing
power: it is necessary for collagen synthesis, for peptide and
steroid hormone synthesis, and for prevention of oxidation of
biological molecules. Ascorbic acid concentration is found to
be much more in the follicular fluid of humans than in the
blood serum. This suggests its transport is actively against a
concentration gradient [136, 137] and that it may play a role of
the antioxidant vitamin during the process of folliculogenesis
[138]. Administration of vitamin C (45 mg/kg/day) has been
shown to alleviate the PM2.5-mediated decrease in anti-
mullerian hormone (AMH) in female mice. Furthermore, a
decrease in the levels of tumor necrosis factor-α (TNF-α),
8-hydroxy-2′-deoxyguanosine (8-OHdG), Bax/Bcl-2, and
caspase-3 was observed in vitamin C–treated groups com-
pared with control groups [139]. A study has investigated
the role of ascorbic acid in extracellular matrix (ECM)
deposition/remodeling to protect the primary ovarian follicles
cultured in alginate hydrogel. Results showed that supplemen-
tation of ascorbic acid (50 μg/mL) significantly augmented
the survival of primary follicles and improved their structural
integrity through modifying the expression of ECM and cell
adhesion molecules [140]. Supplementation of vitamin C
(250 mg/kg/day) for 30 days revealed a significant decrease
in total oxidant status (TOS) and oxidative stress index (OSI)
in ovarian, fallopian tubal, and uterine tissues of rats exposed
to electromagnetic radiation. Moreover, treatment with vita-
min C also diminishes the increased caspase-3 and caspase-8
expressions in ovarian and uterine tissues [141].

Vitamin A

Vitamin A is a fat-soluble vitamin and an essential nutrient
consisting of unsaturated nutritional organic compounds in-
cluding retinal, retinol, and retinoic acids and several provita-
min A carotenoids that must be included in the diet in ade-
quate amounts. It is vital for various processes of life including
reproduction, immune system function, and cellular differen-
tiation [142]. It can quench singlet oxygen and cooperate with
various antioxidant compounds [143]. Vitamin A is found to
play an important role in the reproduction of females includ-
ing steroidogenesis, follicular growth, and oocyte and embryo
development [144]. However, earlier, it has been considered
that retinoids are responsible for maintaining the optimum
level of endogenous antioxidants used to protect oocyte mat-
uration and embryo development from the accumulation of
ROS [145]. The effect of vitamin A therapy on the cascade
of free radicals in pregnancy-induced hypertension (PIH) was
evaluated in third trimester patients. A significant reduction in
lipid peroxidation was found with no effect on CAT and SOD,
suggesting its role as a chain-breaking antioxidant [146]. The

administration of retinol (5 μM) to in vitro maturation medi-
um under atmospheric O2 conditions was reported to have a
positive effect on bovine oocyte and subsequent embryo de-
velopment, suggesting an important antioxidant effect of ret-
inol [147]. A lower dose (5 nM) administration of 9-cis-
retinoic acid, vitamin A metabolite, to the oocyte maturation
media of buffalo has been shown to improve the maturation
rate via a mechanism maintaining optimum levels of antioxi-
dant transcripts and improving the activity of mitochondria
[144].

Vitamin D

Vitamin D is a fat-soluble vitamin found in different forms.
Two forms are mainly essentia l for humans: D2

(ergocalciferol) and D3 (cholecalciferol). Vitamin D2 is pri-
marily produced by plants upon ultraviolet irradiation and,
thus, consumed by humans as part of their diet, while vitamin
D3 is synthesized in the skin exposed to sunlight [148]. The
classical function of vitamin D involves the regulation of
calcium/phosphorous metabolism and bone health [149], but
the presence of vitamin D receptors (VDRs) in various repro-
ductive tissues of females suggests its role in reproductive
physiology [150]. Furthermore, although information relevant
to the antioxidant functions of vitamin D on female reproduc-
tion is scarce or altogether absent, recently, studies have re-
ported the association of vitamin D with female fertility
[151–153]. Animal studies have demonstrated that female ro-
dents with vitamin D–deficient diet and VDR gene knockout
have reduced fertility due to anovulation, uterine hypoplasia,
and impaired follicular development [154–156]. Initially, a
study involving vitamin D and fertility after in vitro fertiliza-
tion (IVF) showed that the rates of pregnancy were four times
higher in women having sufficient vitamin D levels compared
with vitamin D–deficient women [157]. Subsequently, several
studies have shown similar effects [158, 159], while others
have reported no association [160, 161]. Despite this unclarity
of data regarding the role of vitamin D on female fertility,
studies have documented the relationship between vitamin D
and various reproductive pathologies of females including
PCOS, endometriosis, uterine myoma and leiomyoma, and
primary dysmenorrhea that causes infertility [151, 152, 162].

Carotenoids

Carotenoids are the fat-soluble pigments naturally found in
red or dark green and yellow fruits and vegetables.
Carotenoids are powerful natural antioxidants that are consid-
ered to be very potent physical quenchers of singlet oxygen
and also participate in scavenging other ROS [163]. There are
some carotenoids (α- andβ-carotene,β-cryptoxanthin) which
can be converted into vitamin A in humans and, thus, aid in
providing this essential vitamin to the body [164]. A study has
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reviewed the importance of β-carotene as a source of vitamin
A with special emphasis on lactating and pregnant women
[165]. Women with spontaneous preterm birth defects have
been found to have a lower concentration of carotenoids in the
serum, and premature birth risk is reduced with elevated se-
rum concentrations of α- and β-carotene, α- and β-
cryptoxanthin, and lycopene [166]. In preventing premature
birth, consumption of a diet containing fruits and vegetables
rich in carotenoids has also been documented [167]. In a
study, the daily administration of β-carotene considerably im-
proved the β-carotene availability in the microenvironment of
the oocyte, regardless of the energy balance, thus affecting
oocyte quality and development of follicles during maternal
metabolic stress [168]. Periovulatory supplementation of β-
carotenewas shown to improve the corpora lutea development
and follicular growth in cows having fertility problems [169].
In an experimental study, lycopene (0.5mg/kg) administration
for 14 days alleviated the cisplatin-induced ovarian damage in
rats by reducing the MDA levels and enhancing total GSH,
GR, and SOD activities [170]. In another similar study, pre-
treatment with lycopene (5 mg/kg) for 5 days prevented the
methotrexate-induced oxidative injury in rat ovary via its an-
tioxidant potential [171].

Carnitines

Carnitines belong to a class of nutrients called “quasi-vita-
mins” or “conditionally essential” nutrients [172]. Both L-
carnitine (LC) and its acetylated form, acetyl-carnitine
(ALC), have been reported to exert beneficial effects in infer-
tility management by improving the mitochondrial activities
[173, 174]. LC is an intramitochondrial vehicle for acyl group
and facilitates the β-oxidation process via transporting fatty
acids into the mitochondria [175]. LC has been reported to
have a preventive effect on free radical-induced oxidative
damage to DNA [176], suggesting its antioxidant function.
Since LC possesses antioxidant properties with very few side
effects, recently, studies are considering its implementation as
a treatment option for female infertility [173, 177, 178]. A
recent study has shown that oral supplementation of LC
(250 mg for 12 weeks) to PCOS patients improved their total
antioxidant capacity (TAC), reduced lipid peroxidation, and
also augmented their general and mental health parameters
[179]. Oral administration of ALC (1 g/day for 16 weeks) to
functional hypothalamic amenorrhea (FHA) patients has been
reported to have a significant increase in the patients’ LH
levels by counteracting a neuroendocrine pathway having an
inhibitory effect on the reproductive axis [180]. During
in vitro studies, carnitine supplementation has been imple-
mented to reduce the free radical-induced delay of embryonic
development, DNA fragmentation, and morphologically ab-
normal blastocysts’ development after culture of extended pe-
riods [176, 181, 182]. The role of carnitines (LC and ALC) in

improving the fertility of females along with their possible
mechanism of action has recently been summarized by
Agarwal and his coworkers involving various in vivo and
in vitro animal and human studies [183].

Combination Effects of Vitamins and Other
Micronutrients

Given that antioxidant works synergistically with other anti-
oxidants to counteract the damage induced by free radicals,
researchers have started to assess the combination effect of
antioxidant vitamins or other micronutrients (although many
of them are technically not antioxidants) in female fertility.
Naziroglu et al. have investigated the effect of dietary vitamin
C (1 g) and vitamin E (600 mg) combination (VCE) on lipid
peroxidation and antioxidant enzyme activities in
streptozotocin-induced diabetic pregnant rats. Results indicat-
ed that supplementation of VCE with moderate exercise sig-
nificantly enhanced the antioxidant defense as revealed by
reduced MDA levels and enhanced antioxidant enzyme
(GPx, CAT) activities in plasma of diabetic pregnant rats
[184]. In another study, combined supplementation of vitamin
E (1200 IU) and C (1000 mg) for 8 weeks significantly re-
duced chronic pain (43%), dysmenorrhea (37%), and
dyspareunia (24%) as compared with the placebo group in
women with endometriosis [185]. However, co-incubation
of vitamin C and vitamin E (0.5 mM and 1.0 mM) have sig-
nificantly reduced the OS-mediated apoptosis induced by
glyphosate in granulosa cells of caprines during in vitro cul-
ture consisting durations of 24, 48, and 72 h [186]. In an
in vitro study, combination therapy of vitamin E (5 μM) and
folate (0.01 μM) ameliorated the H2O2-induced decrease in
cell viability, GPx and GR activities, and GSH levels in rat
primary endometrial cells [187]. Another in vitro study has
shown that combined formulation of coenzyme Q10
(10 mg/kg) and LC (40 mg/kg) for 21 days improved the
ovulatory response, embryo vitrification, and embryo recov-
ery in rabbits [188]. Attenuating effects of α-lipoic acid
(100 mg/kg/day) and α-tocopherol (20 mg/kg/day) combina-
tion for 30 days on bisphenol-A (BPA)-induced oxidative
damage in rat ovarian tissue were observed where the combi-
nation significantly reduced the BPA-elevated MDA and ni-
tric oxide (NO) levels [189]. Co-treatment with vitamin C
(1 g/kg diet) and LC (100 and 200 mg/kg diet) for 3 weeks
has been shown to improve the reproductive parameters in
hens in terms of enhanced egg production and egg quality
which may be attributed to reduced OS following vitamin
C–LC treatment [190].

Plant Polyphenols

Natural polyphenols (also called as phenolics) are important
dietary antioxidants found in various food sources of plants
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such as vegetables, fruits, chocolate, nuts, wine, tea, and cof-
fee [191, 192]. Studies related to the effects of dietary poly-
phenol consumption on reproductive health of humans are
limited and uncertain. However, based on the accumulated
evidence from in vitro and in vivo animal studies, also from
human studies in various contexts, some may believe the po-
tential health benefits of polyphenols on reproduction of
humans [193].

Resveratrol

Resveratrol is a natural polyphenol present in red wine, grapes,
and other plant extracts shown to play a role of cytoprotection
against cancer, cardiovascular disease, neurodegeneration, dia-
betes, and obesity-related disorders [194]. These different bio-
logical roles played by resveratrol can be attributed to its anti-
oxidant properties such as elevation in CAT and SOD enzyme
activities by resveratrol [195]. Resveratrol efficiently removes
superoxides and hydroxyl radicals, thus protecting lipid perox-
idation in cellular membranes and damage of DNA due to ROS
[196]. Feeding of young mice for 12 months with resveratrol
retained their competence of reproduction, whereas mice of the
same age group in the control group produced no pups.
Moreover, the consistently fed groups have a follicle pool larg-
er than the control group. Resveratrol also resulted in improved
number and oocyte quality [197]. Protection of the ovary from
hexavalent chromium (CrVI)-induced OS by resveratrol was
shown by augmenting the transcription, translation, and endog-
enous antioxidant enzyme activity and decreasing the lipid per-
oxide (LPO) and H2O2 in plasma and ovary [198]. In an ex-
periment, resveratrol was involved in the protection of human
granulosa cells as shown by the absence of cell death, increased
mitosis, and reduced oxidative stress markers [199].
Furthermore, resveratrol, mainly at low doses, was shown to
protect from cisplatin-induced damage to the ovary in rats by
maintaining the numbers of primordial and primary follicles
[200]. In an in vitro experiment, inhibition of reproductive tox-
icity caused by a mycotoxin-deoxynivalenol by resveratrol has
also been documented [201].

Catechins

Green tea (GT) is the most popular beverage which is con-
sumed by millions of people across the world. The valuable
properties of GT are ascribed to polyphenolic compounds,
mainly catechins, accounting for 30% of the dry weight of
GT leaves [202]. Many researchers have recognized the effect
of GT in the reproduction and fertility of females [203, 204].
Considerable progress was noticed in the blastocyst develop-
ment rate and pregnancy rate after adding 15 μM
epigallocatechin-3-gallate (EGCG) in culture media of bo-
vines. Results showed the two different functions of GT cat-
echins: at low concentration (10 mg/mL), it performs the

antioxidant function, while at higher concentration (25 mg/
mL), it showed a pro-oxidant effect [205]. Female mice were
injected with 0.4 mL of EGCG (100 mg/kg body weight)
resulting in improved oocytes’ developmental competence
and quality of embryo [206]. Addition of a lower dose
(0.3 mg/mL) of green tea leaves extract (GTE) in the matura-
tion media as a source of antioxidant has been shown to in-
crease the oocyte maturation rate and also improved the mor-
ula and blastocyst formation rate in sheep [207].
Endometriosis causes pelvic pain and infertility in females.
In an experiment, endometrial tissue from patients was treated
with EGCG that results in the significant inhibition of cell
proliferation, migration, and endometrial and endometriotic
stromal cell invasion [208]. However, the importance of
EGCG in the improvement of the fertility of females with
endometriosis is controversial.

Curcumin

Turmeric (Curcuma longa L.) is commonly used by people
for both cooking purposes and as folk medicine. The rhizome
species containing many different biologically active com-
pounds called curcuminoids, among which, the polyphenol
curcumin is most prevalent [209], and its antimicrobial, anti-
inflammatory, anticancer, and antioxidant activities have been
extensively documented [210, 211]. The crucial curative ef-
fect of Curcuma longa has been credited to curcumin.
However, curcumin’s pharmacological safety was discovered
[212] and its safe consumption for humans was approved by
the U.S. Food and Drug Administration (FDA) [213]. Various
studies have established the stimulatory effects of curcumin
and its analogs on ovarian functions due to its capability to
enhance proliferation and decrease apoptosis [214, 215] while
promoting folliculogenesis [214, 216] and steroidogenesis in
murine ovarian cells [217]. In an experimental study, dietary
turmeric was shown to improve the viability of rabbit pups
and promote the fecundity of rabbits either by increasing the
primary ovarian follicle production or promoting the follicle
growth at all stages of folliculogenesis [218]. Curcuminoids
exhibited stimulatory effect on smooth muscle relaxation in
isolated rat uterus by both receptor-dependent and receptor-
independent mechanisms [219]. Recently, a study has inves-
tigated the protective function of curcumin against OS in D-
galactose (D-gal)-induced premature ovarian failure (POF) in
mice. Curcumin was effectively shown to inhibit OS induced
by D-gal, apoptosis, and ovarian injury through a mechanism
involving the PI3K/Akt and Nrf/HO-1 pathways of signaling,
signifying its protective effect against POF [220].

Quercetin

Quercetin is a component of the polyphenolic group of com-
pounds called flavonoids. It is found naturally in vegetables,
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fruits, seeds, and nuts and considered as a natural antioxidant
present in the diet having different activities in the biological
system [221, 222]. Under disease conditions, quercetin is
found to have a powerful scavenging effect on the production
of free radicals by enhancing the activity of various antioxi-
dant enzymes including CAT, SOD, GPx, and GR [223].
However, quercetin has been shown to play both estrogenic
and anti-estrogenic roles in vitro, therefore, suggesting diverse
biological effects on the function of the reproductive organ
[224, 225]. During development of preimplantation embryos
in vitro, quercetin is involved in the protection of zygote from
H2O2-induced oxidative damage by reducing the level of
ROS, maintaining the function of the mitochondria and mod-
ifying the total antioxidant capacity and antioxidant enzyme
activity such as CAT and GPx to maintain the cellular redox
milieu [226]. Another in vitro study indicated that quercetin
significantly prevented the reduced cells’ viability due to OS
produced by H2O2 and augmented the expression of OS-
related proteins and consequently enhanced the antioxidant
capacity in the ovary [227]. However, quercetin results in
improved protection from cadmium chloride (CdCl2)-induced
unbalancing of reproductive hormones (progesterone, estro-
gen, LH, and FSH) [228]. Additionally, strengthening of
GPx and SOD activities via supplementation of quercetin in
granulosa cells of chicken ovarian follicles was also docu-
mented [229].

Isoflavones

Isoflavones are the most common phytoestrogens found in
grains, nuts, and berries, but most abundant in soy and soy
products such as soy flour, soy milk, tofu, and soy beverages
[230]. Isoflavones are considered as nonsteroidal compounds
which are structurally similar to natural hormone called estro-
gen and have the capacity to bind estrogen receptors that en-
able them to perform estrogenic functions [231]. Intriguingly,
isoflavones may have both estrogenic and anti-estrogenic
functions depending on their concentrations, sex steroids in
the body, and target organs. There are two types of estrogen
receptors, alpha and beta, that provide the different target or-
gans specificity to isoflavones [231]. Phytoestrogens can also
alter the biosynthesis and transport of steroids through synthe-
sis of sex hormone-binding globulin (SHBG) in liver cells
[232] and competitively displacing either 17β-estradiol or tes-
tosterone from plasma SHBG [233]. In addition to this, dis-
ruption of 5α-reductase [234] and aromatase [235–237] by
various phytoestrogens in vitro has also been documented in
the literature along with their potential beneficial and harmful
effects on human and animal health [238]. However, despite
the various aforementioned actions of phytoestrogen, data rel-
evant to antioxidant functions of phytoestrogen in female fer-
tility is scarce or often conflicting.

Genistein (GEN) is the most abundant (60%) phytoestro-
gen present in soybeans [239], while other less common
phytoestrogens include daidzein and glycitein. A study by
Zhuang et al. has examined the effect of GEN supplementa-
tion (160 mg/kg day) on follicular development and follicular
reserves in 4-month- and 15-month-old rat ovary after 4 weeks
and 4 months, respectively. A higher percentage of primordial
follicles by the age of 4 months and more number of surviving
follicles at the age of 15 months were observed in GEN-
treated rats as compared with the control groups [240].
Another study has investigated the effect of GEN
(50 mg/kg/bw for 3 days) on folliculogenesis in immature
rat. Results showed that GEN acted as an estrogen antagonist
during the initial phase of folliculogenesis and as an estrogen
agonist during the later phases, facilitating the transition from
the preantral to antral stages of folliculogenesis [241].
Recently, a study has shown that pretreatment with GEN
(0 .5 , 1 , o r 2 mg/kg for 14 days) inh ib i ted the
cyclophosphamide-induced decrease in serum estradiol and
AMH, oxidative stress, and inflammation in rat ovarian tissue
[242]. A study involving Japanese infertile women showed
that consumption of a diet rich in GEN and daidzein may
reduce deep endometriosis risks [243]. However, isoflavone-
induced trophic effects in female rats were observed, where
long-term treatment with isoflavones results in trophism of the
vaginal epithelium [244, 245]. In contrast, a randomized
double-blind study involving postmenopausal women report-
ed that long-term consumption of soy isoflavones neither af-
fected the endometrial thickness nor enhanced the hyperplasia
or cancer of the endometrium [246].

Medicinal Plants in Female Infertility
Management

The usage of plants by human beings as a medicinal source
has since started from the ancient times for the prevention,
protection, and treatment of various health ailments. Indeed,
herbals and other natural products, including their different
chemical derivatives, constitute approximately 50% of all
the medication currently used worldwide [247]. Moreover,
herbal medicines play an important role in the healthcare sys-
tems of rural areas in both developed and developing countries
[248, 249]. Medicinal plants are utilized for the treatment of
female infertility as an alternative option to avoid the high cost
and adverse health effects associated with various infertility
treatment methods available in the form of ART. Recently, the
prevalence and factors associated with the use of herbal med-
icine by infertile women have been assessed by Kaadaaga and
his colleagues [250]. Since ethanopharmacological survey is
considered as one of the reliable methods for the discovery
and production of natural and synthetic drugs [251], re-
searchers have carried out various ethanopharmacological
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surveys in different regions of the world to discover the vari-
ous medicinal plants used for the treatment of infertility or
pathologies in females that cause infertility [37, 252, 253],
and some of them are discussed below.

Nigella sativa

Nigella sativus is an annual plant of the Renunculaceae fam-
ily, used in folk medicine for various useful purposes espe-
cially during lactation time, and is found in different countries
bordering the Mediterranean Sea: India, Pakistan, and Iran
[254]. It has been used in traditional medicine for the treat-
ment of asthma, cough, headache, and rheumatism and as a
diuretic, galactogogue, and vermifuge [255]. N. sativa and its
most active component called thymoquinone have several
pharmacological properties such as antioxidant, anti-inflam-
matory, anticonvulsant, anti-infertility, and hypotensive ef-
fects [256, 257]. Thymoquinone was found to re-establish
spermatogenesis in rats after testicular injury induced by
chronic exposure to toluene [258]. In a randomized trial on
PCOSwomen, treatment withN. sativa (2 g/day for 16weeks)
significantly increased the average duration ofmenstrual cycle
and decreased the menstrual cycle interval, serum cholesterol,
LH, and insulin level [259]. Recently, a significant enhance-
ment in the reproductive functions of rat was observed after
the supplementation of 100 mg/kg of N. sativa [260]. The
prophylactic effect of N. sativa against cyclophosphamide
has been demonstrated by Kamarzaman et al., where its treat-
ment significantly increased the number of primary and sec-
ondary follicles and also the ovarian diameter [261].

Cimicifuga racemosa

Cimicifuga racemosa or black cohosh is a phytoestrogen-
producing perennial plant of the buttercup family, originally
used by native Americans for the treatment of musculoskeletal
complaints and gynecological diseases [262]. The constituents
of the root rhizome extract include organic acids (isoferulic
acid, cimicifugic acid), triterpene glycosides (acetin,
cimicifugoside), caffeic acid, salicylic acid, tannins, and
phytosterin [263, 264]. The combination of C. racemosa with
tamoxifene was found to be effective for the 12-month relief
of postmenopausal hot flushes, probably due to its antidepres-
sant activity [265]. Recently, the addition of C. racemosa rhi-
zome dry extract (120 mg/day) to clomiphene citrate (CC)
induction has improved the pregnancy and cycle outcomes
in patients with unexplained infertility and PCOS [262, 266,
267]. In another randomized trial of PCOSwomen, higher rate
of ovulation, greater thickness of the endometrium, and higher
rates of pregnancy were observed in the C. racemosa (20 mg/
day)–treated group as compared with the CC group [268].

Cinnamomum zeylanicum

Cinnamomum zeylanicum is an herbaceous plant and an im-
portant spice of the Lauraceae family, used by people across
the globe. Compounds isolated from cinnamon such as flavo-
noids and polyphenols have free radical–scavenging activities
and antioxidant properties [269]. Administration of cinnamon
bark oil (100 mg/kg for 10 weeks) significantly improved the
testicular oxidant–antioxidant status and sperm quality and
decreased the germ cell apoptosis in male rat [270]. In another
similar study, oral administration of cinnamon bark oil mark-
edly alleviated the taxane-induced decrease in testosterone,
sperm quality, and oxidant–antioxidant balance and increased
germ cell apoptosis [271]. Both in vivo and in vitro studies
showed that polyphenol polymers isolated from cinnamon
increase the insulin-dependent glucose metabolism, activate
insulin receptor, and alter the transport of glucose [272,
273]. During a randomized controlled trial, supplementation
of cinnamon improved the antioxidant status, serum lipid pro-
files, and menstrual cyclicity in women with PCOS, suggest-
ing an effective therapy for PCOS treatment [39, 274].

Trigonella foenum-graecum

Trigonella foenum-graecum (fenugreek) is one of the oldest
known medicinal herbs in history. Fenugreek seed has anti-
inflammatory, antispasmodic, and emmenagogue properties.
This easily available and globally distributed herb also has
various pharmacological properties such as anti-inflammato-
ry, diuretic, analgesic, and immunomodulatory [275, 276].
During a clinical trial, administration of fenugreek seed extract
(500 mg/day for 12 weeks) to male volunteers significantly
improved the free testosterone level, sperm count, sperm mor-
phology, and their libido [277]. In a randomized controlled
study, supplementation (600 mg/day) of fenugreek seed ex-
tract (libifem) to healthy menstruating women for two men-
strual cycles significantly increased their free testosterone and
estradiol levels along with improvement in their sexual desire
and arousal [278]. A significant decrease in both ovarian vol-
ume and numbers of cysts along with the restoration of regular
menstrual cycle was observed in PCOS patients following
treatment with the seed extract (1000 mg for 90 days) of
Trigonella foenum-graecum [279]. During a randomized con-
trolled study, supplementation of fenugreek seed powder (3 g
for 3 months) reduced lower abdominal pain in patients with
primary dysmenorrhea without any adverse effects [280].

Foeniculum vulgare Mill.

Foeniculum vulgare Mill. (fennel) is a medicinal herb that is
consumed in brewed form, such as tea [281]. It has various
effects, including estrogen phase formation, weight gain in
mammary glands and endometrium, and cervical and
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antioxidant effects [282]. In traditional Persian medicine, fen-
nel is commonly used to treat menstrual disorders. It also
relieves uterine pain and increases lactation and also used to
treat infertility [283] and PCOS [284]. In a recent study, treat-
ment with F. vulgare Mill. (5 g for 6 months) significantly
reduced the menstrual cycle interval and dysmenorrheal se-
verity in PCOS patients without any side effects [285].

Miscellaneous

The ovarian-inducing potential of Justicia insularis was illus-
trated in immature female mice where administration of its
leaf extract (12.5, 50, and 100 mg/kg) for 20 days results in
early vaginal opening, more number of implantation sites, and
reduced ovarian cholesterol level [286]. In another study, oral
administration of Acmella oleracea (L.) extract to Wistar rats
increased the frequency of proestrous and estrous phases and
decreased the frequency of metaestrous and diestrous phases,
respectively [287]. Administration ofβ-caryophyllene (a phy-
tochemical constituent) to endometriotic rat for 21 days has
shown significant reduction in the growth of endometriotic
implants, without affecting fertility [288]. β-Caryophyllene
is present in huge quantities in many plants such as
Cannabis sativa, Origanum vulgare, Eugenia caryophyllata,
Zingiber nimmonii, and Piper nigrum [288]. Further informa-
tion including the name of the plant, part used, respective
doses, and the improved reproductive parameters in females
has been discussed in Table 2. However, in addition to the
aforementioned fertility-enhancing potential, numerous me-
dicinal plants are also used for their antifertility potential to
regulate fertility in females [289].

Role of Natural Antioxidants in Assisted
Reproduction

Since the delivery of the first human through IVF, more ad-
vancement in the field of reproductive medicine allowed
many infertile couples to have children by using ART [290].
In vitro fertilization and intracytoplasmic sperm injection
(ICSI) are the two most common methods utilized in ART
for medical infertility treatment [290]. However, despite all
these advancements, only 35% of the infertile couples seeking
ART are able to give a live birth [291]. Numerous physiolog-
ical factors have been identified that affect the ART success
rate, among which ROS and the consequent generation of OS
are of great concern in the medical literature [292]. During
ART settings, OS is the major cause of poor gamete/embryo
quality [293]. Sources of ROS during ART could either be
endogenous (spermatozoa, oocytes, and embryo) or exoge-
nous (culture media, pH, temperature, visible light, oxygen
concentration, etc.) [294]. However, among the complex fac-
tors lacking in ART procedures is the effective regulation of

ROS within the physiological range by antioxidants in vitro
[290]. Therefore, one effective method to improve OS-
mediated poor gamete/embryo quality and the resulting ART
outcomes is the use of natural antioxidants to curb the exces-
sively produced ROS. In the ART procedures, antioxidant
treatment can be employed in two general modes, either as
oral supplementation of infertile couples prior to their ART
cycles or as in vitro administration in culture media during the
ART protocol itself [294]. Table 3 summarizes the different
antioxidants used both as oral supplementation or in vitro ad-
ministration to culture media during ART methods along with
their effect on reproductive outcomes in females.

The levels of vitamin C in the serum or follicular fluid of
women with endometriosis were increased after 2 months of
oral supplementation of vitamin C (1000 mg/day), while the
OSmarkers were unaffected [295]. The combined supplemen-
tation of vitamins C (100 mg/kg bw) and E (200 mg/kg bw)
has been shown to increase the oocyte maturation rate, fertil-
ization rate, implantation rate, and embryo development in
first-generation mice pups exposed to mancozeb in utero
[296]. Intake of vitamin C (1, 5, or 10 g/day) with
dydrogesterone as a luteal support by women showed no ben-
eficial effects on clinical pregnancy and implantation rates
[297]. In contrast, oral supplementation of ascorbic acid
(750 mg/day) has significantly augmented the serum proges-
terone level with simultaneous improvement in clinical preg-
nancy rates [298]. In another study, administration of vitamin
E (400 IU/day) was not related to the implantation and preg-
nancy rates in women undergoing controlled ovarian stimula-
tion (COS) and intrauterine insemination (IUI). However, an
improved endometrial response was observed [299]. Co-
supplementation of vitamin E (400 mg/day) and D3

(50,000 IU) enhanced the pregnancy, clinical pregnancy,
and implantation rates in PCOS women. Moreover, a positive
weak relationship was noticed between vitamin D levels, im-
plantation rate, and enhanced clinical pregnancy [300]. Oral
supplementation of vitamins C (1 g) and E (400 IU) for
4 weeks in children produced through ART improved their
plasma NO bioavailability and alleviated the high altitude-
induced pulmonary hypertension [301]. In a prospective co-
hort study, higher folate intake was shown to be associated
with increased rates of implantation, clinical pregnancy, and
live birth [302]. Supplementation of LC (1 mM) to culture
media increased the clinical outcomes including implantation,
clinical pregnancy, and ongoing pregnancy rates in both
mouse and human subjects [303]. Another experimental study
has revealed the increased blastocyst formation rates of aged
bovine oocytes following supplementation of LC to culture
media [304]. Retinol (100 μM) treatment significantly en-
hanced the embryo hatchability rate and TAC, SOD, and
GPx activities during in vitro development of rabbit embryos
[305]. Cryopreservation-mediated injuries during the vitrifica-
tion process of mouse oocytes have been alleviated by
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Table 2 Utilization of different medicinal plants in female infertility management

Plant species Part used Study candidate/
animal

Treatment Improved reproductive functions References

Trigonella
foenum-graecum

Seed PCOS women 2 capsules of 500 mg
each/day for 90 days

Decrease in ovarian volume and number of
ovarian cysts

Return of regular menstrual cycles
Increase in LH and FSH levels

[279]

Healthy women 600 mg/day seed
extract for 2
menstrual cycles

Significant increase in free testosterone and
estradiol

Improvement in sexual desire and arousal

[278]

Justicia insularis Leaf Immature rat 12.5, 50, and
100 mg/kg bw
extract daily for
20 days

Early vaginal opening
Increase in the number of hemorrhagic points,

corpus luteum, implantation sites, ovarian
weight, uterine and ovarian proteins (induces
folliculogenesis)

Decrease in ovarian cholesterol level

[286]

Acmella oleracea Flowers Rat 88.91 mg/kg and
444.57 mg/kg daily
for 21 days

Increased frequency of proestrous and estrous
phase

Decreased frequency of metaestrous and diestrous
phase

[287]

Cimicifuga racemosa Rhizome Infertile women 120 mg/day dry extract Higher oestradiol and LH concentration
Higher serum progesterone, endometrial

thickness, and clinical pregnancy rate

[262, 267]

PCOS women 20 mg dry extract daily
for 10 days

Higher progesterone level, indicating better
ovulation

Greater endometrial thickness
Higher pregnancy rate

[268]

Zingiber officinale Rhizome Rat 100 mg ginger powder
daily for 5 and
10 days

Increased antral follicle count and ovarian stromal
VEGF;

Increased endometrial VEGEF and ovarian
stromal eNOS

[360]

100 mg/kg/day of
6-gingerol-rich
fraction for 35 days

Protected against chlorpyrifos-induced increase in
OS (H2O2 and NO)

Improved the activities of antioxidant enzymes
(CAT, SOD, GPx, and GST) and GSH levels in
ovarian and uterine tissue

[361]

Nigella sativa Seed Mice 0.2, 0.5, and
1.0 mL/100 g
N. sativa oil for
5 days

Increased the number of normal, primary, and
secondary follicles and ovarian diameter in
cyclophosphamide-treated rats

[261]

Rat 0.5 and 1.0 g/kg daily
from day 3 to day 15
of lactation

Increased milk production and pups’ weight
during lactation

[362]

PCOS women 2 g/day powdered seed
as capsules for
16 weeks

Increased the average duration of the menstrual
cycle and ratio of cycle per month

Decreased menstrual cycle interval

[259]

Hypericum perforatum Flowering
tops

Women with
premenstrual
syndrome

900 mg/day for 2
menstrual cycles

Improved the physical and behavioral symptoms
of premenstrual syndrome

[370]

Crocus sativus Stigma Women with
premenstrual
syndrome

30 mg/day for 2
menstrual cycles

Effective in relieving symptoms of premenstrual
syndrome

[371]

Cinnamomum zeylanicum Bark PCOS women 3 cinnamon capsules
(each containing
500 mg cinnamon)
for 8 weeks

Increased total antioxidant capacity (TAC)
Decreased serum MDA levels

[274]

1500 mg/day for
6 months

Improved menstrual cyclicity [39]

Urtica dioica Leaves
and root

Women with
hyperandrogen-
ism

300–600 mg dried
extract daily for
4 months

Significant decrease in total testosterone level, free
testosterone level, and DHEA level

[372]

Linum usitatissimum Seed PCOS women 15 g flaxseed powder
for 3 months

Reduced ovarian volume and follicle numbers
Improvement in menstrual cyclicity and

pregnancy

[369]
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resveratrol (25 and 50 μM) treatment through its antioxidant
potential [306]. A study has shown that the use of NAC for
females undergoing treatment cycles of ICSI results in the
lower early and late rate of apoptosis in granulosa cells in
comparison to control. Also, a negative type of correlation
was noticed between the apoptosis and fertilization rates
[307]. Thus, the use of NAC can be beneficial for women
planning to undergo different ARTs.

Possible Antioxidant Therapies in Female
Reproductive Disorders

Polycystic Ovary Syndrome

PCOS is another gynecological endocrinopathy, estimated to
affect 2–20% of premenopausal women and characterized by
menstrual disorders, hyperandrogenism, and infertility [308].
Current remedies utilized for PCOS only include the manage-
ment of its signs and symptoms, and they are not completely
able to prevent the disease and also cause side effects. Several
antioxidant compounds present in plant-derived food have
been shown to effectively improve the reproductive health
of PCOS patients with very less or no side effects, indicating
an alternative therapeutic approach for its management.

A randomized double-blinded clinical trial was conducted
to evaluate the effect of vitamin E and coenzyme Q10 on
metabolic and hormonal profile of PCOS patients. Results
revealed that supplementation of vitamin E (400 IU) and

coenzyme Q10 (200 mg) combination for 8 weeks led to a
significant decrease in homeostasis model assessment of insu-
lin resistance (HOMA-IR) and serum testosterone levels along
with improvement in SHBG levels compared with the placebo
group [309]. Administration of vitamin C (150 mg/kg bw for
15 days) to DHEA-induced PCOS rats revealed a significant
reduction in MDA, cytokines and estrogen levels, and en-
hancement in antioxidant enzyme (CAT, GST, SOD) activi-
ties in ovarian tissue [310]. Treatment of PCOS-induced mice
with LC (500 mg/kg for 28 days) significantly increased the
total ovarian volume, number of antral follicles, serum FSH
concentration, and FRAP activity, whereas a significant de-
crease in serum testosterone, LH, and MDA level with less
percentage of apoptotic cells was observed, indicating im-
proved endocrine functions and folliculogenesis in PCOS
mice [311]. In a randomized double-blinded study, resveratrol
treatment (1500 mg/kg for 3 months) to PCOS women led to a
significant decrease in total testosterone level, dehydroepian-
drosterone sulfate (DHEAS), and fasting insulin level with
significant elevation in insulin sensitivity index [312]. In an-
other randomized double-blinded placebo-controlled study,
co-supplementation of vitamin D (5000 IU every 2 weeks)
and probiotic (8 × 109 CFU/day) for 12 weeks revealed a
significant decline in total plasma concentration of testoster-
one and MDA and an increase in TAC and total GSH level in
PCOS patients [313]. Recently, a study by Jahan et al. has
demonstrated that quercetin (30 mg/kg/day for 21 days) treat-
ment to letrozole-induced PCOS mice significantly decreased
the ovarian diameter and cysts and restored the number of

Table 2 (continued)

Plant species Part used Study candidate/
animal

Treatment Improved reproductive functions References

Aloe buettneri, Dicliptera
verticillata, Hibiscus
macranthus, and
Justicia insularis

Leaf Rat 50 mg/kg mixture
extract for 5 days (to
evaluate synergistic
effect)

Increased serum LH, FSH, and estradiol level
Increased the number of hemorrhagic points in

PMSG-primed immature rats

[363]

Nardostachys jatamansi
and Tribulus terrestris

Rhizome
Fruit

Rat 5 and 10 mg extract
powder for 12 days

Improved estrous cyclicity
Decreased serum testosterone concentration
Disappearance of follicular cysts and atretic

follicles
Restored the estradiol and progesterone to normal

level in PCOS-induced rats

[364]

Coccinia cordifolia Aerial part Rat 500 and 1000 mg/kg
plant extract for
three estrous cycles

Increased serum estrogen level
Increased the number of uterine implants in

hyperprolactimemia-induced infertility models

[365]

Schisandra chinensis Fruit Rat 40, 200, and
1000 mg/kg/day for
8 days

Increased body weight, uterus embryonic total
index, ovarian index, and number of
implantations in early pregnant rats exposed to
benzo[a]pyrene

[366]

Anthemis austriaca and
Melilotus officinalis

Flower
and
aerial
part

Endometriotic rat 100 mg/day plants
extract for 4 weeks

Reduced adhesion scores, endometriotic volume,
and cytokine (TNF-α, VEGF, IL-6) levels in
peritoneal fluid

[367, 368]
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healthy follicles. In addition to this, a decrease in testosterone
and estradiol levels and an increase in progesterone levels
were observed following quercetin treatment [314]. In another
similar study, quercetin (25 mg/kg/day for 21 days) has been

shown to enhance the levels of antioxidant enzymes (SOD,
CAT, GPx) and reduced the activities of steroidogenic en-
zymes with simultaneous decrease in testosterone and estradi-
ol levels in letrozole-induced PCOS mice [315].

Table 3 Effects of natural antioxidant compounds on assisted reproductive outcomes

Antioxidant
compound(s)

Study objective: to evaluate Intervention (dosage durations) Study outcome(s) References

Vitamin C Effect of vitamin C supplementation on
outcomes of IVF-ET in endometriosis
patients

1000 mg/day vitamin C from 2 months
before IVF-ET treatment until
2 weeks after ET

Increased vitamin C levels in the
serum and follicular fluid than the
control group

No significant differences in
fertilization rate, implantation rate,
and clinical pregnancy rate

[295]

Vitamin C Effect of ascorbic acid supplementation
in patients of luteal phase defects

750 mg/day orally started on the first day
of the third menstrual cycle until
positive urine pregnancy test

Increased serum progesterone levels
Improved clinical pregnancy rate

[298]

Vitamin C Effect of ascorbic acid as additional
support during luteal phase in
infertility treatment

Oral intake (1, 5, or 10 g/day) with
30 mg dydrogesterone for 14 days
after follicle aspiration for the IVF-ET
procedure

No differences in clinical pregnancy
rate and implantation rates

[297]

Vitamin E Effect on treatment outcomes of women
with unexplained infertility
undergoing controlled ovarian
stimulation (COS) and intrauterine
insemination (IUI)

Vitamin E (400 IU/day) administered
from the 3rd to the 5th day of
menstrual cycle until the hCG
injection day of COS

Improved the endometrial thickness
response via likely the antioxidant
and anticoagulant effects

No significant increase in
implantation and pregnancy rates

[299]

Vitamins C
and E

Protective effects against
mancozeb-induced alteration in
oocyte maturation of first-generation
mice pups and their fertilization rate,
embryo development, and pregnancy
rate

Vitamin C (100 mg/kg bw) and vitamin
E (200 mg/kg bw) by oral gavage
every 2 days from the 2nd day of
gestation until the end of lactation

Increased total number of collected
oocytes, oocyte maturation,
fertilization rate, implantation rate,
fecundity rate, and embryo
development

[296]

Vitamins C
and E

Effect on pulmonary vascular
dysfunction and NO bioavailability in
ART children

Vitamin C (1.0 g) and vitamin E
(400 IU) orally for 4 weeks

Increased plasma NO bioavailability
Attenuated altitude-induced

pulmonary hypertension

[301]

Folate Prospective association of folate intake
with ART outcomes

Dietary assessment before ART
treatment via food frequency
questionnaire (FFQ)

Higher folate intake was associated
with the higher rate of implantation,
clinical pregnancy, and live birth

[302]

L-carnitine Whether supplementation of LC in
culture media affects embryo
development and its clinical
outcomes in mouse and humans

1 mM Higher number of good quality
embryos

Increased implantation rate, clinical
and ongoing pregnancy rates

[303]

L-carnitine Effect of L-carnitine supplementation on
aged bovine oocytes in vitro

2.5 mM (30 h incubation of IVM) Enhanced subsequent developmental
capacity

Increased blastocyst formation rate
after IVF

[304]

Vitamins E
and D

Effect of vitamin E and D
co-supplementation on ICSI
outcomes in PCOS subjects

Vitamin E (400 mg/day) and vitamin D3

(50,000 IU/one in 2 weeks) started
consuming tablets 2 weeks prior to
COCP intake and continued until hCG
administration

Increased pregnancy, clinical
pregnancy and implantation rates

No significant association between
either serum or follicular fluid
MDA, TAC, and ICSI outcomes

[300]

Retinol Antioxidant and developmental
capability of retinol on in vitro
development of rabbit embryos

10, 100, and 1000 nM (48 h culture) Increased the embryo hatchability rate
at 100 nM

Increased TAC, SOD, and GPx
activities

[305]

Resveratrol Effect of resveratrol on developmental
potential of vitrified mouse oocytes
after IVF

1, 10, 25, and 50 μM Increased the blastocyst formation rate
at 25 and 50 μM

Reduced OS of vitrified oocytes
Alleviated the abnormal

mitochondrial pattern of oocytes
after vitrification

[306]
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Endometriosis

Endometriosis is a chronic gynecological disorder character-
ized by the growth of endometrial glands and stromal tissue
outside the uterine cavity. It affects approximately 10% of
women during their reproductive time periods and considered
as a major contributor to infertility [316]. Since OS has been
considered as one of the major factors involved in the patho-
genesis of endometriosis [317], the use of natural antioxidant
compounds with fewer adverse effects as a possible treatment
therapy is gaining much interest [318].

Studies have indicated the effectiveness of vitamin C in
reducing the volume of endometriotic tissue and, thus, suggest
the importance of antioxidant therapy in endometriosis [319].
In a prospective cohort study, an inverse relationship was
observed between intake of vitamin C, vitamin E, folate, and
thiamine from food sources and the risks of endometriosis
[320]. Pro-EGCG treatment (50 mg/kg/day) for 4 weeks sig-
nificantly reduced the growth of endometrial implants with
high efficacy and antioxidative and anti-angiogenesis compe-
tence in experimental mice [321]. A study by Jana et al. has
investigated the effect of curcumin nanoparticles (40 mg/kg
bw for 14 days) on endometriosis with or without letrozole in
mice. Results showed a significant decrease in serum lipid
peroxidation and ROS level and an increment in TAC in
curcumin-treated groups as compared with the control groups
[322]. The dose-dependent treatment of vitamin C was shown
to reduce the weight and volume of the endometriotic cysts
[323]. Daily supplementation of vitamins C and E in women
with endometriosis for 4 months was shown to decrease the
markers of OS. However, the amount of daily intake of vita-
mins C, E, and A in those patients was also less than the other
women [324, 325].

Others

During a randomized controlled trial (RCT), supplements of
2 mg lycopene were given to subjects in the second trimester
which shows a reduction in the development of preeclampsia
and intrauterine growth retardation incidences [326].
However, in another study, supplementation of antioxidant
lycopene was unable to reduce the preeclampsia incidences
in women with higher risk, but played a role in reducing the
incidence of intrauterine growth–restricted babies [327].
Another randomized double-blinded study investigated the
role of maternal vitamin C and E supplementation in
preventing spontaneous preterm birth. However, maternal ad-
ministration of vitamin C (1000 mg/day) and vitamin E
(400 IU) daily from 9 to 16 weeks’ gestation until delivery
did not decrease the rate of spontaneous preterm birth [328].
In a randomized double-blinded study, supplementation of
vitamin D3 (400 IU/day) led to the decreased incidence of
abortion and serum IL-23 levels in women with unexplained

recurrent spontaneous abortion [329]. Supplementations of
antioxidants in some gynecological diseases (e.g., preeclamp-
sia and spontaneous abortion) were found to be ineffective
[330–332]. Therefore, more comprehensive studies are re-
quired to explore the role of natural antioxidant compounds
as a possible treatment therapy for these diseases in females.

Safety Measures for Utilizing Natural
Antioxidants

Antioxidants have their own range of efficacy at different
doses. However, some may have adverse impacts beyond a
specific level of intake. Therefore, selecting the type of anti-
oxidants and its doses forms an important criterion. Both
in vivo and in vitro studies suggest that excessive intake of
natural antioxidants and their supplements may negatively
impact the reproductive health of females. The safety of high
doses of vitamins has always been questioned. A prospective
cohort study has reported a small increase in the incidence of
severe preeclampsia/eclampsia/HELLP in women with higher
vitamin E intake from dietary source and supplements. For
vitamin E intake aggregated from diet and supplements (n =
49,373), with an intake of 10.5–13.5 mg/day as reference, the
“severe preeclampsia/eclampsia/HELLP” odds ratio (OR)
was 1.46 (1.02 to 2.09) for an intake exceeding 18 mg/day
[333]. Another randomized, placebo-controlled study reported
that co-supplementation of vitamin C (1000 mg) and vitamin
E (400 IU) daily from the second trimester of pregnancy until
delivery does not prevent preeclampsia [334], but increased
the rates of gestational hypertension in women at risk of pre-
eclampsia and low birth weight in neonates [335].

Using a mouse model, Chen and Chan demonstrated that
dietary curcumin consumption reduced the number of implan-
tations, surviving fetuses, and fetal weight, whereas it en-
hanced the resorption sites [336]. Another study has demon-
strated that higher isoflavone intake (> 40 mg/day) by North
American Adventist women (30–50 years old) was associated
with higher risks of nulliparity and nulligravidity compared
with women with lower intake (10 mg/day) of isoflavone
[337]. During an experimental study, genistein administration
to neonatal rats caused multi-oocyte follicles in mice [338];
however, such types of follicles are associated with lower
rates of fertility during IVF [339]. Moreover, a recent study
has demonstrated that the presence of isoflavones (genistein,
biochanin A, formononetin) at higher concentration (25 μg/
mL) in maturation media during IVM reduced the cleavage
rate and inhibited the blastocysts’ hatching [340]. Long-term
treatment by Ballota undulata may lead to a negative impact
on female fertility and pregnancy in rats [341] through de-
creased weight of the ovary, number of viable fetuses and
implantation sites, and percentage of pregnancies and by ar-
resting of ovarian follicles at the primary and secondary stages
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[342]. The use of Trigonella foenum-graecum (fenugreek) is
again highly contraindicated during pregnancy and
breastfeeding due to its efficacy of uterine stimulation [343].
Overall, these negative impacts of antioxidants are necessary
to consider and justify further explorations to better under-
stand the effects of natural antioxidants on fertility of females.

Conclusion and Future Perspectives

Infertility influences females more or less around the world
and brings with it considerable psychological sufferings to
couples. Inevitably, an optimum level of free radicals is essen-
tial for normal reproductive functions of females; however,
excessive levels of free radicals may be deleterious and cause
infertility. Since high levels of free radicals and a lower anti-
oxidant status have been reported to induce infertility,
employing treatment strategies that involve the use of highly
efficient antioxidant compounds to retard the free radical-
induced oxidative damage and prevent infertility is intuitive.
Natural antioxidant compounds act by efficiently removing
the free radicals and upregulating the antioxidant systemwith-
in the body. Thus, the role of natural antioxidant compounds
enlisted in the article for female infertility management is
worth exploring. Moreover, recently, there is a rising interest
in the use of antioxidants, either natural or synthetic.

The preliminary studies conducted on medicinal plants
showed promising therapeutic effect on female infertility,
but unluckily, the majority of them are deficient in scientific
evidence of pharmacological or toxological nature. The infor-
mation presented in the current article may provide a scientific
basis for future research to assess their efficacy and safety for
the development of new plant-based medicine to treat female
infertility.

Furthermore, the production of OS during ART procedures
associated with reduced clinical outcomes cannot be ignored.
Due to their high accessibility and low cost, natural antioxi-
dant compounds could be an economic treatment and adjunct
to the ART procedures like IVF and ICSI to enhance fertility
outcomes. However, even though studies to date suggest an
effective treatment advantage, more well-designed random-
ized placebo-controlled clinical trials focusing on important
clinical outcomes such as pregnancy and live birth are re-
quired in the future to effectively understand the role of natural
antioxidants.

Despite the considerable benefits of natural antioxidants on
reproductive pathologies of females such as endometriosis
and PCOS, clinical trials exploring the utilization of natural
antioxidants to treat various reproductive pathologies have
produced sturdily conflicting results. Moreover, the majority
of the studies in support of possible therapeutic effects of
antioxidant compounds have been conducted on experimental
animals under different laboratory conditions. Therefore,

more clinical trials in the future involving human subjects
are needed to delineate the efficacy of natural antioxidants as
a possible treatment therapy for these reproductive
pathologies.

Conclusively, optimal intake of natural antioxidants could
decrease OS and improve female fertility; however, excessive
intake may have adverse effects on reproductive health. A
consensus about the type and quantity of natural antioxidants
is still required to produce more successful results. Therefore,
larger well-designed, dose–response studies in humans are
further warranted to incorporate natural antioxidant com-
pounds into the clinical management of female infertility.
Additionally, it is well known that different antioxidants work
interactively within the body to prevent cellular damage, and
studies focusing on the combination effect of different natural
antioxidant compounds are also required in the future.
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