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Abstract

Alzheimer’s disease (AD) is characterized by cognitive dysfunction and progressive neu-
rodegeneration. The major hallmarks of AD pathology are amyloid plaques and neuro-
fibrillary tangles. However, AD often coexists with other brain microvascular lesions
caused by comorbidities, including obesity, diabetes, hypertension, and cardiovascular
diseases. The risk factors for these comorbidities are collectively referred to as metabolic
syndrome (MetS). Clinical AD is preceded by decades of prodromal cellular phase. Dur-
ing this asymptomatic phase, systemic changes caused by MetS can play critical roles in
driving neuroinflammation, an important cause of AD pathogenesis. Studies of MetS
and AD have traditionally remained in distinct domains. The cross talk between MetS
and the cellular phase of AD is an important area to be investigated. AD risk factors iden-
tified by genome-wide association studies (GWAS) have strongly suggested the role of
microglia, the resident immune cells of the brain, in AD pathogenesis. Microglial dys-
regulation is caused not only by CNS-intrinsic factors but also by systemic changes. MetS
appears to cause brain mitochondrial dysfunction through a defective NAD+-sirtuin
pathway. Sirtuins are a family of seven proteins that are involved in longevity and
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inflammation. Among them, SIRT3 is exclusively present in mitochondria, playing a sig-
nificant role in metabolic adaptation. SIRT3 deacetylates and activates key metabolic
enzymes and transcriptional regulators, utilizing NAD+ in the process. MetS could prime
microglia through the interface of blood–brain barrier (BBB). Age-dependent break-
down of the BBB has been reported in human subjects. The neurovascular unit at
BBB consists of brain microvascular endothelial cells, end feet of astrocytes, and peri-
cytes. Therapeutic targeting of the sirtuin pathway in AD with coexisting pathologies
has the potential to produce profoundly beneficial effects in improving mitochondrial
function and decreasing neuroinflammation.

1. ALZHEIMER’S DISEASE IS A CONVERGENT SYNDROME
WITH MIXED PATHOLOGIES

Deposition of amyloid plaques and formation of neurofibrillary tangles

are important causes of Alzheimer’s disease (AD).1 However, recent studies

have suggested that the pure form of ADmay be rare and that the coexisting

brain lesions could tip the scale to clinical diagnosis of dementia.2–4 A report

reviewing the Nun Study (NS) and Honolulu-Asia Aging Study (HAAS)

concluded that the total burden of comorbid brain abnormalities was the

main determinant of cognitive deficits in clinically diagnosed AD.2 The

combination rather than the type of lesions played a major role. This study

also leads to the understanding that there can be a broader opportunity to

treat dementia. Pharmacological interventions targeting the comorbidities

have improved survival from life-threatening complications. However silent

neurodegenerative pathways that proceed during decades could contribute

to cognitive decline. Although Alzheimer’s transgenic mice expressing

human mutant APP, presenilin and tau have advanced our knowledge of

AD pathogenesis, studies of AD mouse models with mixed pathology are

needed to recapitulate the molecular events of human AD. The com-

orbidities including brain hypoperfusion, silent ministrokes, diabetes, and

cardiovascular dysfunction need to be incorporated into the current AD

transgenic models to recapitulate CNS pathology in the human disease.5

The boundaries that distinctively separated AD from other forms of demen-

tias are slowly disappearing, suggesting that dementia is a confluent syn-

drome with contributions from multiple pathologies.3 Comorbidities of

dementia include obesity, diabetes, hypertension, and cardiovascular diseases

(Fig. 1). The risk factors for these comorbidities are collectively referred to as

metabolic syndrome (MetS).
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2. CELLULAR PHASE OF AD

Sporadic late-onset AD, the most common form of dementia, is char-

acterized by slow progression over several decades. Cognitive reserve and the

ability of brain cells to cope with stress can delay the onset of clinical demen-

tia. There are multiple factors that drive the cellular phase of AD. For exam-

ple, impaired brainmetabolism in early stages appears to play a significant role

in cognitive decline.6 Specifically, defects in frontal and temporoparietal glu-

cose metabolism could contribute to disease progression.7 Mitochondrial

dysfunction is another early event during the prodromal stage of AD8,9

and it plays an important role in the initiation of neuroinflammation. Linking

of these two pathways has provided new insights through the generation of

inflammasome,10–12 a multiprotein cytosolic complex that is generated in

response to infection, cellular damage, and metabolic dysregulation.13

Inflammasome formation leads to the activation of caspase-1 and to the

proteolytic cleavage and secretion of the cytokines IL-1β and IL-18.14

Sterile inflammasomes in response to cellular stress causes neuronal injury.15

During the disease progression, inflammation gets exacerbated as a result

of feed-forward loops and synergistic actions of transcription factors.

Fig. 1 Comorbidities of Alzheimer’s disease. There are several comorbid conditions
including obesity, diabetes, cerebral ischemia, cardiovascular diseases, and hyperten-
sion that can potentially increase the susceptibility to Alzheimer’s disease. The mecha-
nism appears to involve mitochondrial dysfunction in the neurovascular unit and in the
microglia. The resulting blood brain damage and neuroinflammation during the prodro-
mal stage of Alzheimer’s disease could influence the progression of cognitive decline.
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For example, secreted inflammatory mediators support astrogliosis and

cytokine-activated transcription factors including NF-κB, STAT-1, and

c-jun (AP-1) act synergistically to induce more cytokines and chemokines.

Many of these events during the presymptomatic phase of this complex dis-

ease can become independent self-sustaining pathways later. Presence of

comorbidities during the cellular phase of AD can potentially facilitate the

progression toward clinical AD. Comorbidities can significantly influence

the trajectory of prodromal stage to symptomatic AD. It is being increasingly

recognized that the therapeutic targeting of AD needs to start at the prodro-

mal cellular phase.16 For example, although epidemiological studies have

linked the use of antiinflammatory drugs with reduced risk of AD,17 clinical

trials with NSAIDs have failed (reviewed in Ref. [18]), suggesting that the

interventions need to start early. Advances in biomarker-based diagnostic

criteria can facilitate early interventions.19,20

3. CROSS TALK BETWEEN MetS AND THE CELLULAR
PHASE OF AD

The major challenge in understanding the complexity of AD patho-

genesis is its long cellular phase.21 This is the stage at which comorbidities

can potentially cross talk with AD pathogenesis in mid-life. MetS is a com-

bination of five risk factors including abdominal obesity, hyper-

triglyceridemia, insulin resistance, high blood pressure, and low levels of

good cholesterol (HDL). Current reports are suggesting that around 35%

of adults haveMetS.22 The role of comorbidities needs to be examined during

the prodromal stage rather than at the time of clinical AD diagnosis, because

aged population with comorbidities takes diverse paths in terms of disease

management and the type of medications used. Although genetic risk factors

play significant roles in susceptibility to AD the role of modifiable risk factors

cannot be ignored. A combination of genetic predisposition with unhealthy

life styles can dramatically affect the susceptibility to cognitive decline. Con-

sumption of Western diet and lack of physical activities could play important

roles during the cellular phase of AD. Although MetS is a known risk factor

for cardiovascular disease, diabetes, and stroke, MetS as a risk factor for

dementia has received less attention because of mixed results from epidemi-

ological studies.23–26 An Italian longitudinal study in MCI patients reported

thatMetS independently predicted an increased risk of progression to demen-

tia in a 3.5-year follow-up.27 The French three-city study reported associa-

tion between MetS and vascular dementia (VaD) but not with AD.28 MetS
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late in life was found to be not associated as a risk factor for dementia.25 The

mechanism appears to be microvascular damage leading to disrupted cortical

connectivity. Insulin resistance has been suggested to be an important link

between MetS and cognitive dysfunction. Visceral fat during MetS is char-

acterized by infiltration of macrophages which produce proinflammatory

cytokines. The increased levels of circulating cytokines can cross BBB and

produce sustained chronic inflammation through an inflammatory loop the

mechanism of which we have described in a recent study.29

4. TARGETING SIRT3 TO IMPROVE METABOLIC
ADAPTATION DURING THE CELLULAR PHASE OF AD

Mitochondrial dysfunction is an early event during the prodromal

stage of AD9 and it plays an important role in the initiation of neu-

roinflammation. For the therapeutic targeting of these defects, sirtuins

appear to show promise.30 The silent information regulator (SIRT) genes

(sirtuins) comprise a highly conserved family of seven proteins that use

NAD+ as a cosubstrate to catalyze the deacetylation and/or the mono-ADP

ribosylation of target proteins.31 They regulate diverse biological mecha-

nisms including longevity, genomic stability, and inflammation. Among

the seven members, SIRT3 is exclusively present in mitochondria, where

it plays a central role in metabolic regulation32 (Fig. 2). Acetylation is an

Fig. 2 SIRT3 and metabolic adaptation. SIRT3 deacetylates and activates metabolic
enzymes, transcription factors, and other critical proteins in mitochondria. The meta-
bolic enzymes include long chain fatty acid acyl-coA dehydrogenase (LCAD), acetyl
CoA synthetase 2 (AceCS2), and isocitrate dehydrogenase (IDH). Overall, SIRT3 mediates
adaptive response to metabolic stress especially during the aging process. SIRT3 can be
targeted therapeutically by supplementation with nicotinamide riboside, a precursor
of NAD+.

247Metabolic Syndrome and Alzheimer’s Disease



important posttranslational modification that plays a critical role in metabolic

regulation.33 Around 300 acetylation sites have been identified in mito-

chondrial proteins.34 SIRT3 is essential for adaptive response to metabolic

stress. Targets of SIRT3 deacetylation include metabolic enzymes including

long chain fatty acid acyl-CoA dehydrogenase (LCAD), acetyl CoA synthe-

tase 2 (AceCS2), and isocitrate dehydrogenase (IDH), the transcription fac-

tor FOXO3a, transcriptional coactivator PGC1-α, antioxidant enzyme

SOD2, mitochondrial OPA1 and complex1 proteins.35 SIRT3 mediates

adaptive response to metabolic stress, which is critical during aging. SIRT3

is transcriptionally upregulated by dietary restriction and fasting.35 Homo-

zygous SIRT3�/� mice are viable and do not display any gross physical

or behavioral abnormalities.36 However, when fed with energy-rich diet,

they develop MetS due to impaired mitochondrial metabolism.37

Single-nucleotide polymorphism of human SIRT3 is associated with sus-

ceptibility for MetS.38 Nicotinamide adenine dinucleotide (NAD+) is a

coenzyme for metabolic pathways and it is also a cosubstrate for many

enzymes including sirtuins.39,40 Depletion of NAD+ plays a critical role

in neurodegeneration.40–42 Replacing the NAD+ levels is emerging as an

important therapeutic approach.43 Increasing the cellular level of NAD+

by administration of nicotinamide riboside (NR), a precursor of NAD+,

is an effective strategy to activate the sirtuin pathway.44 Other approaches

to increase NAD+ with nicotinamide mononucleotide (NAM), NAD+,

and nicotinic acid have undesirable effects.45–47

5. MICROGLIAL PRIMING DURING MetS

Microglia, the resident immune cells of the brain, constitute 5%–10%
of the brain cells with region-specific variations. Microglia originate from

erythromyeloid precursors in the embryonic yolk sac and migrate to the

brain before the blood–brain barrier (BBB) is formed.48 Microglial synaptic

pruning by a complement-dependent pathway plays an important role in the

establishment of neuronal network during development.49 Genome-wide

association studies (GWAS) of AD patients have shown that a large number

of genetic polymorphisms of risk factor genes are involved in immune reg-

ulatory pathways, especially in microglia.50 Microglia are known to be acti-

vated in the vicinity of amyloid plaques in the Alzheimer’s brain and they are

believed to reduce Aβ burden by phagocytosis. Landreth and coworkers51

demonstrated that phagocytosis of β amyloid by microglia can be signifi-

cantly improved with the use of RXR agonist bexarotene, leading to
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decrease in β amyloid load in AD mouse models. However, uncontrolled

chronic inflammation results in the release of neurotoxic factors including

proinflammatory cytokines and reactive oxygen species by glial cells,

resulting in the neurodegenerative process. In response to injury, microglia

change their phenotype and response. Recent reports have suggested that

M1/M2 polarization of microglia is an oversimplification. Deep sequencing

studies have revealed unique molecular signatures of microglia when com-

pared to other immune cells as well as other brain cells.52–55 Microglial gene

expression patterns are important markers because they reflect the neurode-

generative environment and the detrimental cues sent by MetS from the

periphery. Microglia also play crucial intermediary roles in the CNS effects

of gut microbiota.56 For example, mice in germ-free environment with less

developed microbiota have immature microglia. Microbiota-generated

short chain fatty acids (SCFA) act on GPR34, a SCFA receptor on

microglia, leading to its maturation.56 SCFAR KO mice have microglia

with immature phenotype. Western diet causes significant decreases in

SCFA and GPR34.57

6. PERIPHERAL AND CENTRAL INFLAMMATION
CONNECTION

Bidirectional cross talk between peripheral and central inflammation is

an important component of AD pathogenesis.58 Aging-associated chronic

low-grade inflammation has been referred to as “inflammaging.”59 The

expression of genes in the inflammatory pathways is significantly elevated

even during cognitively normal aging.60 The expression patterns in this

study suggest activation of microglia and perivascular macrophages. The

progression of neurodegenerative diseases is known to be exacerbated by

systemic infection and inflammation.61 Villeda et al. made an interesting

observation that exposure of aged animal to young blood reverses the effects

of aging at the molecular and functional levels.62 Microglia in their entire life

span, do not directly come in contact with the systemic circulation.48 Induc-

tion of cytokines and chemokines in hippocampus is observed, following

systemic challenge with IL-1β and TNFα in mice.63 Higher peripheral con-

centrations of proinflammatory cytokines have been reported in Alzheimer’s

patients.64 Framingham study has reported elevated circulating IL-1β and

TNF-α as markers for the risk of AD.65 Elevated levels of circulating

TNF-α, associated with acute and chronic systemic inflammation, have
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been shown to contribute cognitive decline in AD.66 Proinflammatory

cytokines are known to pass through BBB.67–69 Microglia are known to

be primed in the aging brain and they respond to peripheral inflammation

with greater severity and duration.70 BBB damage observed during aging

further adds to the exacerbation of CNS inflammation with the entry of

immune cells into the brain. Activated microglia in the perivascular region

can induce the expression of the adhesion molecules through secreted

proinflammatory cytokines. Vascular adhesion molecules play important

roles in immune cell entry. The cascade involves, rolling adhesion with

E-selectin and P-selectin and firm adhesion with ICAM1 and VCAM1,

followed by the entry of immune cells. Availability of FDA-approved drugs

that can modulate microglial activation and improve brain microvascular

function are promising.

7. OVERLAP OF VaD WITH AD

Because 20% of total energy consumption is in the brain, it is highly

vascularized to facilitate the uptake of oxygen and nutrients. VaD is the sec-

ond most common form of dementia after AD. However, significant over-

lap between these two forms is being recognized. The overlap ranges from

ADwith vascular dysfunction to mixed type of dementia.71 When cerebro-

vascular lesions are often observed in aged brains, it is difficult to consider

VaD as a distinct type.72 Deteriorating vascular function and the progressive

neurodegenerative process need to be viewed as converging pathogenic

mechanisms. Two-hit vascular hypothesis suggests that defective brain

microvascular circulation (first hit) acts as a trigger for the pathological

events leading to the second hit of Aβ accumulation.73 In line with this

hypothesis, primary vascular events caused by the comorbidities could

trigger a chain of events leading to neurodegeneration. Both VaD and

AD share common risk factors including obesity, diabetes, hypertension,

and smoking. Dementia could result from combined burden of vascular

and neurodegenerative pathology. Cerebral amyloid angiopathy (CAA),

observed in majority of AD patients, can cause intracerebral hemorrhage

and microbleeds.74 Thus additive and synergistic effects between VaD

and AD can be expected. Understanding the contribution of vascular dys-

function to AD pathogenesis is critical for the development of effective

therapeutic targets. Promoting the vascular health in the aging brain can

be an important therapeutic strategy.
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8. NEUROVASCULAR UNIT FACILITATES MetS–AD
CROSS TALK

Comorbidities of AD can exert their deleterious CNS effects through

neurovascular unit (NVU) (Fig. 3). NVU contributes to the development of

VaD as well as its progression. A recent MRI study in human subjects has

reported age-dependent breakdown of BBB.75 Studies in rodents have

shown that feeding of energy-rich diet leads to compromised BBB integ-

rity.76–78 BBB damage in the aging brain leads to accumulation of

blood-derived proteins including immunoglobulins, albumin, fibrinogen,

and thrombin.73 Bien-Ly et al. reported lack of BBB permeability in AD

mouse models.79 Essentially this study raises doubt regarding the plasma

Aβ-mediated BBB disruption. It appears that BBB damage could be a feature

of AD with mixed pathologies. NVU consists of brain microvascular endo-

thelial cells (BMECs), end feet of astrocytes, and pericytes. To meet the high

energy demand of active transport across BBB, endothelial cells contain high

number of mitochondria. Studies with BMEC have revealed that their sus-

ceptibility to oxidative stress.80 Silencing of SIRT3 leads to decreased via-

bility of endothelial cells.81 BMECs are uniquely different from other

Fig. 3 Metabolic syndrome and the neurovascular unit (NVU). NVU consists of brain
microvascular endothelial cells, end feet of astrocytes, and pericytes. Cerebrovascular
endothelial cells are critical sensors of dyslipidemia, hyperglycemia, and peripheral
inflammation and play critical roles as mediators of microglial activation. Two-way com-
munications between these cell types are critical to maintain homeostasis.
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vascular endothelial cells because they are glued together by tight-junction

(TJ) proteins including occludin and claudins.82 As they line the luminal

side, they are in constant contact with circulating factors and in communi-

cation with circulating immune cells. Therefore, cerebrovascular endothe-

lial cells are critical sensors of peripheral inflammation and mediators of

microglial activation. Microglia act as sensors of these signals leading to it

reactivation. Microglia not only responds to the cues on the environment

in the parenchyma but also to the signals generated by NVU. Microglia play

biphasic role in terms of BBB integrity in a context-dependent manner. Fol-

lowing BBB injury, juxtavascular microglia migrate to the site and close

the leak through their processes with P2RY12 receptor.83 However,

proinflammatory cytokines released from activated microglia are also known

to decrease the expression of TJs and increase the expression of matrix

metalloproteinase (MMP-9) which degrades TJ proteins.84 Higher levels

of circulating MMP-9 caused by MMP-9 gene variant are associated with

a higher risk for MetS.85 TNF-α causes microvascular endothelial perme-

ability by activation of MMP-9.84 Individuals with history of hypertension

and high plasma levels of MMP-9 develop white matter hyperintensities.86

Hyperglycemia-mediated induction of MMP-9 causes astrocyte migra-

tion.87 Circulating MMP-9 levels are higher in children with diabetic

ketoacidosis.88

9. CEREBRAL ISCHEMIA AND AD

The progression of cognitive decline in AD patients is faster with

coexisting cerebral infarction.89 Cerebral ischemia by tMCAO in

CX3CR1/GFPmouse model with the loss of function of microglia showed

decreased stroke size.90 Biphasic functions of microglia after stroke have

been reported, suggesting that suppressing microglial activation may not

be an effective therapeutic strategy.91 Microinfarcts are commonly observed

in the aging brain.92,93 The incidence of microinfarcts increases further in

VaD patients.94 Silent infarcts have been shown to be associated with

MetS.95,96 These microinfarcts are generally microscopic in nature. These

silent infarcts are typically identified in postmortem examination. Compared

to global cerebral ischemia, less information is available with experimental

microinfarcts models. A mouse microinfarct model has been developed

by Nedergaard and colleagues.97 This model is generated by unilateral injec-

tion of cholesterol crystals. Unlike the classic MCAO model in which
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neuronal loss is irreversible after 3 h, in the microinfarct model, neuronal loss

is delayed over a 24-day period. The chronic effects of microinfarcts could be

due to hypoxia resulting from diffuse hypoperfusion, oxidative stress, and

inflammation resulting from glial activation.Overall, microinfarcts are consid-

ered to contribute independently to cognitive decline. Even in the absence of

dementia, they are associated with decreased cognitive function score. These

asymptomatic brain lesions can collectively contribute to the progression of

AD pathology in additive or synergistic manner.
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